

Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di Cagliari, Italy

Zr-, Hf- and Ta-based Ultra High Temperature Ceramics for Thermal Protection SystemsR. Orrù , R. Licheri, C. Musa and G. Cao

1st International Symposium: "Hypersonic flight: from 100.000 to 400.000 ft"

Introduction

Ultra High Temperature Ceramics (UHTCs) based on transition metal (Zr, Hf, Ta, etc.) diborides and carbides are considered to be quite interesting due to the unique combination of suitable chemical-physical and mechanical properties:

- melting point above 2700°C
- high hardness
- good electrical and thermal conductivity
- chemical inertness
- good thermal shock resistance
- resistance to ablation in oxidizing environments

Introduction - 2

Starting powders

Conventional techniques (furnace, solution methods, etc.)

Consolidation methods

classical HP

Severe sintering conditions:

- Temperature (> 2000°C)
- Processing times (hours)

Typical approach

Introduction of appropriate sintering aids
 Examples: SiC, Si₃N₄, MoSi₂, TaSi₂, etc.

Alternative options

Starting powders with improved sinterability

More efficient consolidation methods

<u>In this work</u>

- Convenient route for obtaining <u>powders</u> with improved sinterability
 - Self-propagating High Temperature (SHS)
- Innovative consolidation method
 - Electric Current Assisted Sintering or Spark Plasma Sintering (SPS)

SHS and its process parameters

Burning velocity Combustion temperature Heating rate

Induction time for ignition Ignition temperature 0.1–20 cm/s 2300–3800 K 10³ - 10⁶ K/s

0.2–1.2 s 800–1200 K

Sintering ability of SHS powders

Mishra et al., *J. Mater. Res.* 15 (2000) 2499-2504 Mishra et al., *Mater. Sci. Eng.* A364 (2004) 249–255

ZrB₂ powders prepared by three different techniques:

a) self-propagating high-temperature synthesis (SHS)

- $ZrO_2 + B_2O_3 + 5Mg \rightarrow ZrB_2 + 5MgO$
- MgO removal using diluite HCl

b) replacement reaction process (RRP)c) carbothermic reduction process (CRP)

sintered in a graphite furnace for 1 h at 1800°C

		1			
	1	SHS		RRP	CRP
Relative density		93-94%	į	86%	87%

Sintering ability of SHS powders Motivation

- TEM :
 - Significant differences in defect concentrations (dislocations, stacking faults and twins):

Rapid heating (240000 K/min) and cooling (1600 K/min) rates during SHS

Sintering of SHS powders: Examples

System	Sintering Method	Reference
AIN	Microwave Sintering	Hsieh et al, 2007
Al ₂ O ₃ -TiC	Pressureless Sintering, Hot Pressing	Lee et al., 2001
γ-alon	Hot Pressing	Zientara et al., 2009
CoAl	Spark Plasma Sintering	Takano et al., 2001; Hirota et al., 2001
Cr ₂ AIC matrix composites	Hot Pressing, Spark Plasma Sintering	Jaworska et al., 2013
HfB ₂	Spark Plasma Sintering	Musa et al., 2013
HfB ₂ -HfSi ₂	Spark Plasma Sintering	Musa et al., 2014
HfB ₂ -SiC, HfB ₂ -HfC-SiC	Spark Plasma Sintering	Licheri et al., 2009
La _x -Sr _{1-x} TiO ₃	Spark Plasma Sintering	Kikuchi et al., 2010
La _{0.7} Sr _{0.3} MnO ₃	Spark Plasma Sintering	Yan et al., 2011
MoSi ₂	Spark Plasma Sintering	Shimizu et al., 2002
NbC–NbB ₂	Spark Plasma Sintering	Tsuchida and Kakuta, 2006
NiAl	Spark Plasma Sintering	Kitaoka et al., 2000; Hirota et al., 2001
β-Si ₃ N ₄	Hot Pressing, Spark Plasma Sintering	Bai et al., 2007
α-Sialon	Hot Pressing	Chen et al., 2002; Smirnov, 2009
Sr _{1-x} R _x TiO ₃	Spark Plasma Sintering	Zhang et al., 2007
TaB ₂ -SiC, TaB ₂ -TaC-SiC	Spark Plasma Sintering	Licheri et al., 2010a, Licheri et al., 2010b
Ti-Al ₂ O ₃ -TiC	Hot Pressing, Spark Plasma Sintering	Musa et al., 2009a
Ti ₂ AIC	Hot Pressing	Chlubny et al., 2010
Ti ₂ AIN	Hot Pressing	Chlubny et al., 2012
TiB ₂	Pressureless Sintering	Khanra et al., 2007
TiC _{0.7} -TiB ₂	Spark Plasma Sintering	Musa et al., 2009b
TiC-Si ₃ N ₄	Spark Plasma Sintering	Bai et al., 2008
TiN	Hot Pressing	Russias et al., 2007
TiN/Y-(α/β)-Sialon	Pressureless Sintering	Xu et al., 2006
Ti-Si-C	High Temperature High-Pressure	Jaworska et al., 2005
ZrB ₂	Pressureless Sintering	Mishra et al., 2000; Mishra et al., 2004
ZrB ₂ -SiC, ZrB ₂ -ZrC-ZrC	Spark Plasma Sintering	Licheri et al., 2007; Licheri et al., 2008

Spark Plasma Sintering

R. Orrù et al., Consolidation/Synthesis of Materials by Electric Current Activated/ Assisted Sintering, Mater. Sci. Eng. R, **63(4-6)**, 127-287 (2009)

SPS vs Conventional HP

- Main difference: external or direct powders/die heating

- Increased heating rates:

Sintering phenomena are promoted
 Processing times significantly reduced
 Finer microstructure

SPS experiments

SPS apparatus 515S model, Sumitomo Coal Mining Co. Ltd, Japan

I=1500 A Mechanical load= 50kN

Vacuum (10-20 Pa)

Measured parameters

- Temperature of the die surface
- Electric current
- Voltage
- Sample Displacement (δ)

The case of Ti-Al₂O₃-TiC: Results Musa et al., J. Cleaner Prod. 17(9), 877-882 (2009) <u>Sintering conditions</u>

Technique	T (°C)	Pressure (MPa)	t _D (min)	$t_{\rm T}({\rm min})$	ρ (g/cm ³)	ρ _{rel} (%)
SPS	1100	20	4	7	4.14	94.5
SPS	1150	20	4	7	4.24	96.8
SPS	1200	20	2	5	4,52	>99.9
HP	1200	40	60	~295	4.22	96.3
HP	1250	50	60	~ 305	4.39	>99.9
HP	1300	25	60	~ 315	4.50	>99.9

 Lower T, applied P and shorter processing times

Energy consumption

Method	Total energy	Specific energy	Specific energy	
	consumed (J)	consumed (J/g)	consumed (kWh/g)	
SPS HP	$(1.15 \pm 0.15) \times 10^{6}$ $(1.97 \pm 0.12) \times 10^{7}$	$egin{aligned} (3.83 \pm 0.50) imes 10^5 \ (6.57 \pm 0.39) imes 10^6 \end{aligned}$	$\begin{array}{c} 0.10 \pm 0.01 \\ 1.83 \pm 0.11 \end{array}$	

• Energy saving of the order of 90-95%

Material properties

Method	E (GPa)	Н _К	H _{V1}	Thermal shock (°C)	Wear rate (mm ³ /Nm)	Friction coefficient μ	$\begin{array}{l} \textit{K}_{IC} \\ (MPa \times m^{1/2}) \end{array}$
SPS	286	1290	1846	250	$6.7 > \times 10^{-6}$	0.76	4.20
HP	293	1330	1454	275	$9.6 imes 10^{-6}$	0.85	4.35

 Improved <u>Vickers</u> <u>hardness</u> and <u>wear</u> <u>rate</u>

SHS - SPS: recent results

 Several near fully dense UHTC products: MB₂, MB₂-SiC, MB₂-MSi₂ and MB₂-MC-SiC (M=Zr, Hf, Ta)

Applications:

- aerospace industry
- solar absorber
- molten metal crucibles
- cutting tools
- electrodes, etc.

The case of ZrB₂-ZrC-SiC

Licheri et al., Combination of SHS and SPS Techniques for Fabrication of Fully Dense ZrB₂-ZrC-SiC Composites" *Mater. Letters* **62**, 432–435 (2008)

Powders Synthesis by SHS

 $8Zr + 2B_4C + 1.5Si + 3.5C \rightarrow 4ZrB_2 + 4ZrC + 1.5SiC$

Self-propagating behaviour: T_c = 2200°C, v_f = 8 mm/s

Complete reactants conversion

Commercial ZrB₂-ZrC-SiC powder mixture with the same nominal composition also processed by SPS

The case of ZrB_2 -ZrC-SiC Spark Plasma Sintering of SHS Powders Sintering conditions: T_D = 1800 °C, P=20 MPa, t_D =10 min

SHS powders

- Fully dense products

Mechanical and oxidation
 resistance properties comparable to
 the best results reported in the
 literature

Commercial powders

Only 90.6±1.4% dense materials

The case of ZrB₂-ZrC-SiC Motivation

• Relatively coarser SHS powders

 Each SHS particle consists of various ZrB₂ and ZrC grains

Strong interfaces between phases

Reduced diffusion distances

The case of HfB₂-HfSi₂

Musa et al., Synthesis, Sintering and Oxidative Behaviour of HfB₂-HfSi₂ ceramics, Ind. Eng. Chem. Res., **53**, 9101–9108 (2014)

Powders Synthesis by SHS: two options

Single step synthesis: the two components are synthesized in one stage (1+ α) Hf + 2.2 B^{*} + 2 α Si \rightarrow HfB₂ + α HfSi₂ + B₂O₃ 1

Two steps synthesis: the two components are synthesized separately $Hf + 2.2 B^* \rightarrow HfB_2 + B_2O_3$ $Hf + 2Si \rightarrow HfSi_2$

*Excess of Boron required to compensate its partial loss during the occurrence of the SHS reaction

Complete reactants conversion

SHS powders
 Similar particles size

The case of HfB₂-HfSi₂ Spark Plasma Sintering

 HfSi₂ acts as a sintering aid during the SPS process for the densification of HfB₂

• A major effect is displayed when starting from powders where the two constituent phases are simultaneously obtained *in-situ*

Importance of interface formation during SHS

The case of ZrB₂-SiC

Licheri et al., Efficient Synthesis/Sintering Routes to obtain Fully Dense ZrB₂-SiC Ultra-High-Temperature Ceramics (UHTCs) Ind. Eng. Chem. Res. 46 9087-9096 (2007)

Two processing routes

1) <u>RSPS (Reactive SPS)</u>: Synthesis and simultaneous consolidation of the material

2) <u>SHS-SPS</u> (SPS of SHS powders): The composite material is first synthesized by SHS and then consolidated by SPS

The case of ZrB_2 -SiC <u>RSPS</u> (T_D= 1900 °C, P=20 MPa)

Intensity [a.u.]

The case of ZrB₂-SiC <u>SHS-SPS:</u> Powders Synthesis by SHS

Complete reactants conversion
 SHS particles several ZrB₂ and SiC grains

The case of ZrB₂-SiC RSPS and SHS-SPS: comparison

SHS-SPS
 Relatively milder sintering conditions (1800 °C, 20 min)

•Different reaction mechanisms:

combustion regime

highly sinterable

Combustion synthesis during RSPS

- Extremely reactive systems (highly exothermic, mechanically activated, ...)
- RSPS conducted at high heating rates

Sharp displacement

Combustion synthesis reaction

Beneficial for powders consolidation

Combustion synthesis during RSPS Drawbacks

Marked gas pressure increase caused by volatile species (B_2O_3) developed during combustion synthesis (confined environment)

+

Powders expulsion Products inhomogeneity Possible die breakage

Safety

Problems with process scale up

Properties of bulk UHTC composites obtained by SHS-SPS

System	ρ [%]	Hardness [GPa]	K _{IC} [MPa m ^{1/2}]	
ZrB ₂ -SiC	99.6	HV1 =	5.0±0.3	
(ZS) ²		16.7±0.4		20
HfB ₂ -SiC	>	HV10 =	7.0 ± 0.7	
(HS) ²	99.9	19.2±0.6		15 15 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17
T ₂ R_SiC	~ 96	HV10 =	8 4+0 8	
(TS)		18 9+0 4	0.7-0.0	
		10.7 ±0.4		V 5 - V TS
ZrB ₂ -ZrC-	98. 7	HV10 =	5.9 ± 0.5	7
SiC (ZZS)		16.9±0.2		0 HS
				500 1000 1500
HfB ₂ -Hf-	98.5	HV10 =	6.2 ± 0.7	Temperature, °C
SiC (HHS)		18.3±1.1		
TaB ₂ -TaC-	~ 96	HV10 =	4.2±0.3	
SiC (TTS)		18.3±0.3		

Rational

The observed oxidative behavior can be explained on the basis of several studies reported in the literature on this subject (Hinze et al., 1975; Monteverde and Bellosi, 2003; Monteverde and Bellosi, 2005; Wu et al., 2006). Briefly, the very volatile B_2O_3 , obtained from the oxidation of MB_2 , combines with SiO₂ formed from SiC oxidation to give a silica-rich borosilicate glass layer. The latter one reduces boria evaporation, other than acting as an oxygen diffusion barrier, thus providing improvement of oxidation resistance of the UHTC materials.

Concluding remarks

- The combination of the SHS and SPS techniques offers a promising opportunity for the consolidation in <u>shorter</u> <u>processing times</u> and <u>milder temperature</u> conditions of <u>difficult-to-sinter ceramic powders</u>
- The SHS route is able to rapidly provide highly sinterable UHTC powders
 - The severe heating and cooling rate conditions →
 → higher defect concentration in SHS product
 - A significant role is played by the stronger bonds established at the interfaces between the different phases formed *in-situ* during SHS

Sintering phenomena are promoted

Concluding remarks-2

 The direct passage of the electric current through the powders and the graphite die during SPS leads to very high heating rates, so that sintering phenomena are strongly accelerated

Processing times can be significantly shortened and sintering temperature lowered

- Comparison with RSPS:
 - Gradual solid-state mechanism → more severe sintering conditions are required with respect to SHS-SPS
 - Combustion regime → several inconveniences

tand rd	Dimens ion compon	max. pressin g	max. voltage	max. current	max. heating
ype	ents [mm]	force [kN]	[V]	[A]	power [kVA]
IP D	Ø 80	250	8	8000	60

Distretto Aerospaziale della Sardegna (DASS) Scarl

Introduction

 The diffusion and application of highly refractory materials such as transition metal (Zr, Hf, Ta, etc.) borides and carbides (Ultra-hightemperature ceramics or UHTC) is hindered by the difficulties for their fabrication in highly dense form

Introduction - 2

- Bulk UHTCs are typically obtained in dense form by Hot Pressing (HP), through which commercially available powders are sintered
- Alternatively, the synthesis and simultaneous densification can be also accomplished by reactive HP using appropriate reaction promoters
- The critical aspect related to this processing route is represented by the high sintering temperatures, mechanical loads and, especially, prolonged processing times (on the order of hours), required to achieve acceptable relative density levels (residual porosity and rather coarse microstructure)

The case of Ti-Al₂O₃-TiC

Musa et al., Energy efficiency during conventional and novel sintering processes: the case of Ti-Al₂O₃-TiC composites. J. Cleaner Prod. 17(9), 877-882 (2009)

Applications: wear parts, engine components, etc.

Powders Synthesis by SHS

0.9135 Ti + 0.585 TiO₂ + 0.780 Al + 0.2485 C → → 1.250 Ti + 0.390 Al₂O₃ + 0.2485 TiC

Sintering of SHS powders: conventional HP vs SPS

<u>HP experiments</u>

HPW 150/200-2200/100-1 A apparatus, FCT Systeme GmbH (Instituto de Cerámica y Vidrio, Madrid, Spain)