

CIRA Italian Aerospace Research Centre PROPULSION DIVISION PROPULSION SYSTEMS FOR HYPERSONIC VEHICLES SALVATORE BORRELLI

Rome, 30 June 2014

High-Speed Airbreathing Propulsion: Motivations

- Mission requirements define the most suitable propulsion system
- Airbreathing engines use atmospheric oxygen for combustion thus allowing for weight and volume reduction and specific impulse increase w.r.t. rockets
- The operative envelope is reduced w.r.t. rockets since the engine functioning strongly depends on Mach number
- For hypersonic flight (M>5) the most efficient airbreathing engine is the scramjet

 $I_{s} = \frac{F}{g_{0}n_{s}}$ (Specific Impulse)

High-Speed Airbreathing Propulsion: Advantages and Drawbacks

- Aircraft engines: it reduces the time for long flights
- Weapon systems: it increases the range and reduces time-to-target
- Launchers: it reduces the fraction of the weight of the propulsion system

Mandatory Hypotheses

- ✓ Airframe-engine integration
- ✓ Optimized combustor and injection strategy/layout

Advantages

- ✓ Mechanical simplicity
- ✓ High propulsive efficiency
- ✓ Wide Mach number range: 2 < M < 6÷8

Drawbacks

- ✓ High thermal loads for combustor and nozzle
- ✓ Needs to adjust intake and/or nozzle geometry to the different flight conditions

Rome, 30 June 2014

Main Interests

- Create an Italian competency into an innovative research field with great opportunities for both civilian and military applications
- Participate to European future experimental flight campaigns to forward advanced technologies requests at the Italian manufacturing industry

Activities

- Design of airbreathing propulsive system components (intake, combustor, nozzle)
- Aero-propulsive database of hypersonic propelled vehicles
- Flight experiment of a scramjet engine mounted on a hypersonic vehicle
- Scramjet propulsive system of a hypersonic tactical missile
- MHD bypass for a scramjet engine
- Ramjet Testing facility

Hypersonic Vehicles with Airbreathing Propulsion

Hypersonic Vehicles with Ram/Scramjet Propulsion

LAPCAT A2 vehicle for passenger transportation (300 PAX, cruise at Mach 5, 25.4 km altitude)

HEXAFLY scramjet propulsion flight experiment (3m vehicle, cruise at Mach 7.4, 28÷33 km altitude)

LAPCAT MR2.4 vehicle for passenger transportation (300 PAX, cruise at Mach 8, 32÷33 km altitude)

HYTAM feasibility study of scramjet propelled hypersonic tactical missile (4.5m vehicle, cruise at Mach 7.5, 30 km altitude, time-to-target=460s for 1000 km)

Ramjet Propulsion: design of Mach 5 ramjet engine components

- □ CFD support to the detailed design of main components (intake, combustor, nozzle) of the LAPCAT A2 Mach 5 cruiser pre-cooled turbofan/ramjet engine
- □ CFD support to wind tunnel test campaigns

Courtesy by REL

Cruise condition: Mach Number 5 at an altitude of 25.4 km (end of climb/ acceleration cruise condition)

Design of Airbreathing Propulsive System Components Ramjet Propulsion: design of Mach 5 ramjet engine components Nozzle: flow uniformity, thrust, EINO, H₂O, unburned H₂ X=5 mm, CFD, TDM=3 120 X=5 mm, EXF 100 SCIMITAR Engine Nozzle high loss (36%) P0=5 bar P0byp=1.8 bar V1 configuration V1 geometry: turbulent k-eps standard tach numbe Y (mm) 5,313 5,060 4,807 4,554 4,048 3,795 3,542 3,289 3,046 2,783 2,783 2,783 2,277 2,024 1,771 1,516 1,012 0,759 0,556 60 **Y**(m) 0 ۲ (m) -0.5 0 configuration -2 V1 geometry: lamina -1.5 0.2 Shock P02/P01 -³0 0.5 1 1.5 2 3.5 - 4 X (m) **X** (m) Shock Nozzle: analysis of plume/external flow Slip line interaction, configuration trade-off study, performance prediction, bypass and core nozzles detailed internal fluid dynamics shock Mach disk Nozzle: CFD analysis and rebuilding of Boundary layer shock propulsive nozzle experiment at GDL Compression system from jet boundar

1st International Symposium "Hypersonic Flight: from 100.000 to 400.000 ft"

ASSOCIAZIONE

Aero-Propulsive Database of Hypersonic Propelled Vehicles

APCATI

- Scramjet Propulsion: Analysis of a Mach 8 concept vehicle
 - Nose-to-Tail simulation of a full-scale vehicle by using a CFD 3D code for both internal (scramjet operating mode) and external flow

- Cruise condition: Mach Number 8 at an altitude of 32÷33 km
- Grid: 3.5 million cells, 174 blocks
- Detailed CFD analysis of the vehicle
 - ✓ Grid sensitivity analysis (3 levels)
 - ✓ Combustion chemistry model sensitivity
 - ✓ Analysis of local phenomena inside the scramjet path

Scramjet Propulsion: Analysis of a Mach 8 concept vehicle

- APCATI
- ❑ Aero-propulsive balance of the scramjet vehicle in fuel-off and fuel-on conditions: the balance is positive (D_{prop}<0) for laminar and turbulent hypothesis in fuel-on conditions</p>

Grid	Engine	Flow	L	D _{tot}	D _{body}	D _{prop}	D _{intake}	D _{cc}	D _{nozzle}	Eff Aer
level	state	regime		(ext + int)	(ext)	(int)				
[-]	[-]	[-]	[tons]	[tons]	[tons]	[tons]	[tons]	[tons]	[tons]	[-]
L_3	ON	LAM	347.81	-26.88	34.08	-60.95	18.01	1.44	-80.41	10.21
L_3	ON	TURB k-e	341.69	-17.25	37.23	-54.49	20.62	3.41	-78.51	9.18
L ₃	ON	TURB-SA	347.12	11.82	58.78	-46.96	23.79	4.47	-75.21	5.91
L ₃	ON	TURB-SA0	343.76	4.48	52.11	-47.63	22.87	4.32	-74.81	6.60

- Contribution to aero-propulsive database of the vehicle
- □ Aerodynamic performance at the cruise conditions (L≥W, T≥D)
- Lift-to-drag ratio (external) around 6 for more reliable CFD simulations
- ❑ Sensitivity analysis to find the exact value of ER assuring aero-propulsive balance (T≥D) necessary for cruise (T=D for ER ≈ 0.84)

Scramjet Propulsion: Analysis of a Mach 8 concept vehicle

APCAT

- 2D and simplified (slices instead of port holes) 3D geometry: structured mesh
- □ 3D detailed geometry: unstructured mesh (11M cells) and use of FLUENT v13

Aero-Propulsive Database of Hypersonic Propelled Vehicles

Scramjet Propulsion: Analysis of a Mach 8 concept vehicle

Scramjet Propulsion: Analysis of a Mach 8 concept vehicle in WT

□ CFD support to experimental test campaigns (small scale, L=1.44 m)

- □ 11M cells structured grid (use of SPARK code)
- DLR HEG test chamber flow conditions
- Inviscid and viscous flow simulations
- Fuel-on

 $P_{\infty} = 2051,18 \text{ Pa}$ $M_{\infty} = 7,355$ $\rho_{\infty} = 0,02717 \text{ kg/m}^3$ $T_{wall} = 300 \text{ K}$ Standard air model provided

Aero-Propulsive Database of Hypersonic Propelled Vehicles

Scramjet Propulsion: Analysis of a Mach 8 concept vehicle in WT

- Split approach for viscous simulations
 Good evaluation of aero-propulsive
- balance (comparison with experiments)

Test	Regime	Dtot	Dext	Dint	Doff - Don
[-]	[-]	[N]	[N]	[N]	[N]
CFD CIRA	OFF	592.00	380.00	213.00	NA
CFD CIRA	ON	189.00	380.00	-191.00	NA
CFD CIRA					404.00
CFD DLR					436.00
EXP HEG					525.00

	Eff.	EINO			
EUL	58.92	27.34			
NS	90.78	24.03			

- □ Contribution to the development of the scramjet vehicle, launch vehicle and mission
- Aero-propulsive characterization of different scramjet vehicle configurations, setup and analysis of AEDB in nominal propelled flight condition
- □ Sizing of ailerons (shape, span, length) and vertical tail (shape, size, toe-angle)
- Analysis of longitudinal trimming conditions
- Assessment of static stability analysis in clean and trimmed configuration
- □ Assessment of dynamic stability analysis with a focus on Dutch-Roll
- □ Flight Control equipment
 - ✓ Inertial Measurement Unit
 - ✓ Magnetometer
 - ✓ Flight Control Computer
 - ✓ Aileron servo-actuators
 - ✓ Aileron actuation lane

Experimental Flight Test Vehicle Vehicle's length 3 m Flight speed M=7.4 Altitude 28÷33 km Scramjet operation 10÷15 sec

#	Part name	Mass (kg)	Volume (m³)	Gx (m)	Gy (m)	Gz (m)	Power (W)	VDC (V)						
1	IMU-1	2	0,005	1,938	-0,091	-0,100	30	28						
2	IMU-2	0,5	0,001	2,405	0	-0,147	5	28						
3	FCC	2	0,004	1,938	0,091	-0,100	5	28						
4	Act. Moog 1	4,6	0,004	2,220	-0,103	-0,147	180	28						
5	Act. Moog 2	4,6	0,004	2,220	0,103	-0,147	180	28						
	EFTV Flight Control Hardware													

Scramjet Propulsion: Design of propulsive system of a hypersonic tactical missile (HYTAM)

- Preliminary design of a scramjet propulsive system (by using an engineering tool and simplified CFD) to match mission requirements
- □ Air/H₂ combustion with 1-D SPREAD code (detailed kinetic scheme by Jachimowski)
- □ Critical issues: mixing of reactants, injection modalities, ignition delay, combustion development and stability, thruster performance

1st International Symposium "Hypersonic Flight: from 100.000 to 400.000 ft"

Scramjet Propulsion for a Hypersonic Tactical Missile

Scramjet Propulsion: Design of propulsive system of a hypersonic tactical missile (HYTAM)

- □ Multi-ramp inlet to achieve P and T values to properly ignite combustion
- □ Effects of P and T on ignition delay
- \Box To limit combustion chamber size the optimum fuel is LH₂
- Need for a strong fuselage/propulsive system integration: aerothermodynamics and propulsion disciplines are not separable
- □ Sizing of scramjet propulsive system and performance: ignition length and gross thrust

H2

118,1

14.3

70

20

CH4

55

2.24

422

112

Kerosene

44

2.01

800

420

Property

Specific heat Cp at 300 K(KJ/Kg/K)

Boiling temperature at 1 atm (K)

Heat of combustion (MJ/Kg)

Liquid density (Ka/m^3)

Scramjet Propulsion: MHD Bypass technique

A strategy to improve scramjet performances is the **MHD bypass technique** proposed in the past by Bruno, Park et al.

Operation principles:

MHD generator slows down the flow to the desiderated value of M, and recovers energy (E_v/uB<1)</p>

MHD accelerator after combustion accelerate the flow throughout F ponder-motive force. (E_v/uB>1)

Magnetic field generated by permanent magnets in a sharp body (by EMC3NS)

The seeding injection system (Cs+ or K+) gives to the flow a certain value of electrical conductivity.

Effect of the magnetic field on the pressure distribution over the sharp body (by EMC3NS)

Scramjet Propulsion: MHD Bypass technique

<u>Advantages</u> :

- Increase of combustion efficiency and stability with a more compact design of the scramjet propulsive system (i.e. limit the combustion chamber size)
- With an efficient electric accumulator and a good ionization level (5%) is possible to gain thrust throughout the accelerator
- Under inviscid hypothesis, from preliminary calculations (by assuming a 60% generator efficiency) it has been estimated a gain in terms of total force with MHD bypass

<u>Drawbacks</u>:

- Off-design conditions difficult to be handled
- MHD generator efficiency is a critical issue to guarantee an effective gain on thruster performance
- Feasibility of high-efficiency MHD generator not still been proven
- Increase of aerodynamic drag ?
- Necessity of means to handle the radioactivity of Cs+ or K+ used for the seeding injection system

Experimental Capabilities for Ramjet Propulsion

The existing CIRA rocket engine ground test facility will be updated by including:

• fuel line (JP4);

ramjet engine test cell;

• air heater;

- Freestream Mach conditions ranging from 2.5 to 5
- Altitude of nearly 30 Km

specific non-intrusive diagnostics.

- Both JP4/Air and Methane/Air as propellants
- Thrust chamber max diameter 20÷30 cm
- Thrust chamber max length 120÷150 cm
- □ Chamber pressure 8÷10 bar

CIRA rocket engine ground test facility: present layout

- During the last years CIRA has matured competencies in airbreathing propulsion systems for hypersonic vehicles by participating to European and National projects
- □ The following topics have been/are being developed:
 - ✓ Physical modelling of combustion
 - ✓ Development, verification and validation of engineering tools and CFD codes
 - ✓ Support to design of airbreathing engine components
 - ✓ Support to design of experimental test campaigns and test rebuilding
 - ✓ Analysis of a complete scramjet vehicle configurations
 - ✓ Feasibility study of a flight experiment of a scramjet propulsion system mounted on a hypersonic vehicle
 - ✓ Contribution to design of mission, launch vehicle and scramjet propelled vehicle
 - ✓ Feasibility study of a scramjet propulsive system of a hypersonic tactical missile
 - ✓ Feasibility study of a MHD bypass for a scramjet engine
 - ✓ Feasibility study of future experimental capabilities for ramjet propulsion

Other Slides

Rome, 30 June 2014

Scramjet Propulsion: code development and validation (LAPCAT-I)

- □ Study of the main thermo-fluid dynamics phenomena in this type of engines
- □ Trade-off analysis of kinetic models for Air/H₂ combustion
- □ Typical supersonic combustion features: mixing process in a normal-injection configuration; mixing and combustion in a parallel-injection configuration; scramjet combustor in fuel-off and fuel-on conditions

Ram/Scramjet Propulsion: combustion modelling (LAPCAT-II)

- \Box Detailed and reduced kinetic schemes for Air/H₂ combustion in presence of NO_x
- □ A detailed reference scheme has been selected and its results have been compared with available literature experimental data in different p and T ranges
- □ A proper reduced scheme has been selected able to predict NO_x emissions in the typical operating and off-design conditions of the Mach 5 and Mach 8 vehicles propulsion systems, suitable to be embedded into a CFD code

• Necessary inclusion of effective pressure history (shock tube)

Ram/Scramjet Propulsion: engineering tool development, demonstration and validation (LAPCAT-II)

- SPREAD engineering tool development, demonstration and validation activities of both engine module and aerothermodynamic module
- Engine module: multi-ramp inlet, mixer, combustor, nozzle with different geometry assumptions (constant, linear, tabulated geometries), detailed and reduced combustion chemistry, viscous effects
- □ Aerothermodynamic module: 3-D Supersonic-Hypersonic Panel Method based on surface inclination methods, viscous corrections
- □ High flexibility for quick prediction of aerodynamic performance and aero-heating
- Good comparison with available CFD/EXP/AEDB data, assessment of error margins

Mach

A.o.A. (deg)

Altitude (km)

8

0

31.95

Ram/Scramjet Propulsion: engineering tool application to nose-to-tail analysis of MR2.4 vehicle (LAPCAT-II)

Weak coupling between propulsive and aerothermodynamic modules

Analysis of external aerothermodynamics and internal engine's flowpath

Full application to MR2.4 vehicle (L=94 m) in flight condition

SPREAD-ENGINE simulation

➢ Good general prediction of external aerodynamics and engine's internal flowpath (w.r.t. CFD reference) $APB = D_{ext} + D_{int} = D_{ext} - T_{prop}$

Simulation	Comb. Coupling	Owner	ER	L (kN)	APB (kN)	$D_{ext}(kN)$	D _{int} (kN)	D _{pres} (kN)	D _{visc} (kN)	L/D
CFD TURB SAO	1D/3D	ESTEC	0	3453,00	643,00	467,00	176,00	337,00	306,00	7,39
SPREAD+SIM	ATD module	CIRA	0	3095,97	664,40	409, 63	254,77	373,26	291,14	7,56
CFD TURB SA0	1D/3D	CIRA	0,6	3372,30	44,00	511, 20	-467,20	-364,00	408,00	6,60
CFD TURB SA0	3D/3D	CIRA	0,6	3438,00	195,00	534,00	-339,00	-251,00	446,00	6,44
SPREAD+SIM	ATD+ENG modules	CIRA	0,6	2971,92	143,72	525, 25	-381,53	-179,44	323,16	5,66

1st International Symposium "Hypersonic Flight: from 100.000 to 400.000 ft"

40.00