

Hypersonic technologies and atmospheric entry missions at ESA

L. Marraffa, ESA/ESTEC, Aerothermodynamics Section

1st international symposium Hypersonic Flight Rome, 30/6/2014

Structure of the presentation

1. Introduction

- 2. <u>Technologies</u>
 - 1. <u>Facilities</u>
 - 1. <u>SCIROCCO PWT</u>
 - 2. ESTHER Shock Tube
 - 2. <u>Technological developments, New concepts</u>
 - 1. Inflatable
 - 2. <u>Deployable</u>
 - 3. <u>MHD</u>
 - 3. Flight tests:
 - 1. <u>EXPERT</u>
 - 2. <u>IXV</u>
 - 3. Entry Observation Capsules
 - 4. IRDT project
 - 5. <u>PHOEBUS</u>
- 3. Coordination, direct technical support
- 4. Future developments

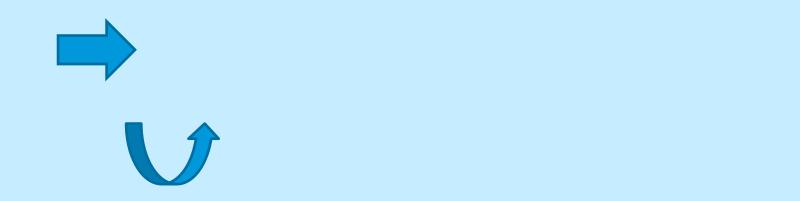
1. Introduction

ESA experience for (re)entry

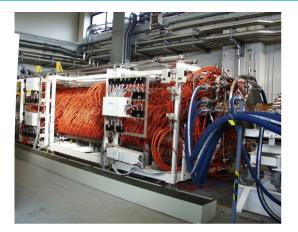
- ARD : low Earth orbit (7.8 km/s)
- IRDT : Suborbital (7km/s)
- Huygens : Titan (6km/s)
- ATV destructive entry (7.8 km/s)
- ExoMars: Mars, <6km/s
- Expert, IXV, ARV,... < 7.8 km/s
- Future sample return missions: 11-15 km/s (velocity higher than the Earth escape velocity!)
- Scaling of Earth entry fluxes for TPS design is V^{3.5} for convective fluxes, and V⁹ or more for radiative fluxes.

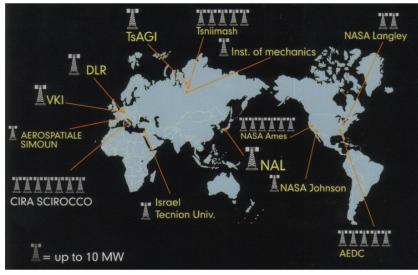
2. Technologies

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

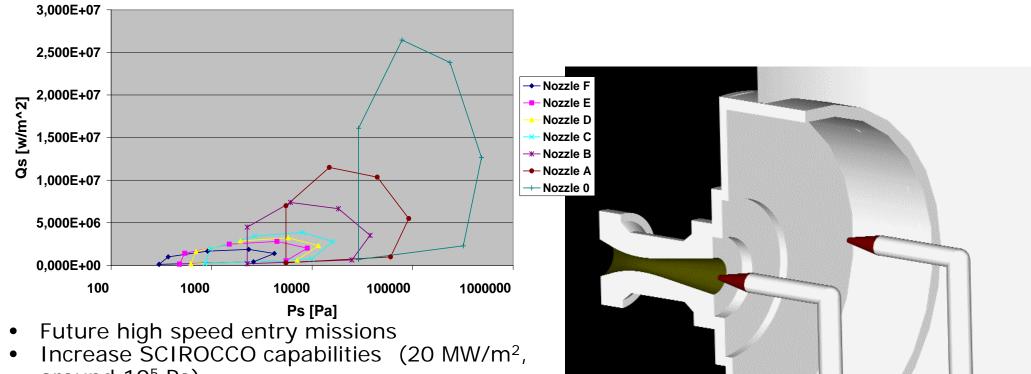

2.1. Facilities

6

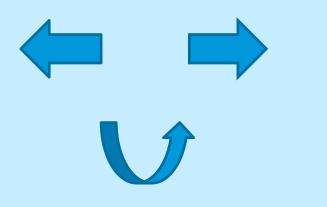



SCIROCCO PWT

Largest facility in the world Designed for orbital spaceplanes (HERMES) Versatile facility


8

SCIROCCO upgrade



9

- around 10⁵ Pa).
 Also useful for other applications (air breathing etc...)
- Modifications:
 - Nozzle-less configuration,
 - new sample holder devt and impl.
- 14 MW/m2 achieved. 20 MW in 2nd phase

2.1.2. ESTHER shock tube

European Shock-Tube for High Enthalphy Research

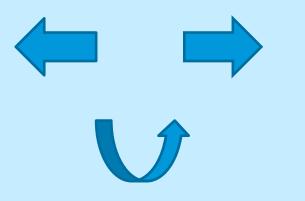
- Shock-Tube: A facility for reproducing the conditions of an atmospheric entry
- Support to planetary exploration missions and meteoroids planetary protection research
- funding from the European Space Agency and IST/IPFN
- First facility of its class to be built in the last 30 years in Europe
- World class facility capable of reaching superorbital shock-speeds in excess of 10km/s

Length: 16m Test-section diameter: 80mm

Shock Velocities: 4-12+ km/s Pre-shock press.: 0.1--100+ mbar

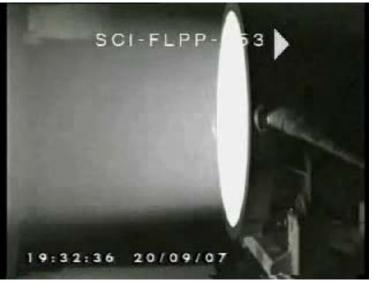
Compositions: Air (Earth), CO2-N2 (Venus, Mars), N2-CH4 (Titan)

Shock tube parts machining



Outside view of the laboratory and view of the experimental hall

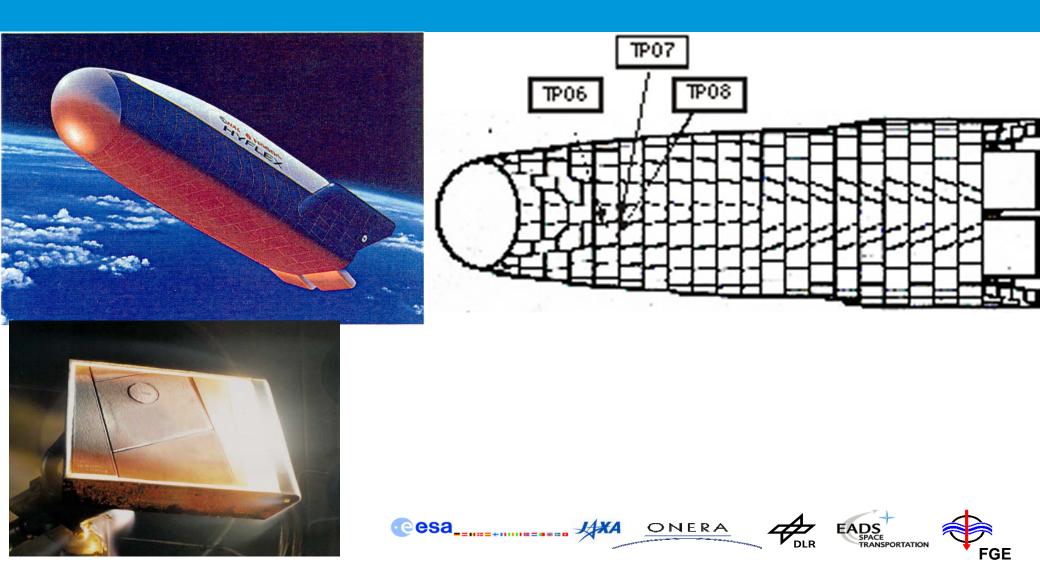
2.2. Technological developments, new concepts



FLPP: reusable launcher technology

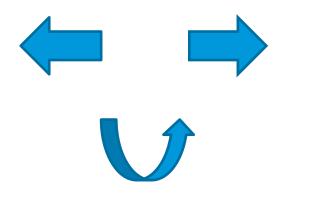
Ceramic Matrix Composites (CSiC) TPS (for fluxes ≤ 0.8 MW/m2)

- Oxide Protection Layer performance
- Extended lifetime plasma exposure
- Stability of artificially induced damages in plasma
- Observation of the partial catalycity effects on heat flux-to temperature relationship



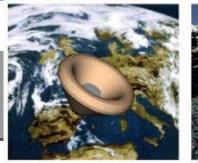
- Residual strength and mass loss inspection
- behavior of sensor instrumented shingle,
- inter panel gaps arrangement and sealing systems,
- thermal insulation fastening system to the vehicle substructure

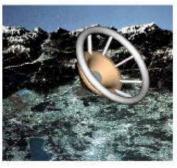
Gap Heating: HYFLEX



Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

Inflatable and deployable entry vehicles




PARES Project History

1999-2000

ISS Download System Driven by technological considerations → Inflatable Braking Device

#1: Deployable Heat Shield "Type Ic"

#2: Deployable Decelerator "Type Ilb"

#4: Rigid Stabilizer TPS "Type III"

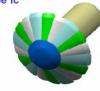
European Space Agency

Nov 2003 – Jun 2004

OCRS Pre-Phase A \rightarrow Payload requirements & download needs

Sep 2004 – Nov 2004

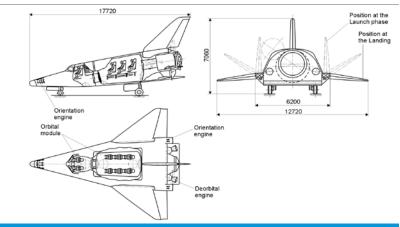
PARES Concept Consolidation Phase → Shape selection, EADS-ST internal team


DCC

Dec 2004 – May 2006

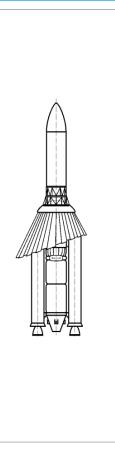
PARES Phase B

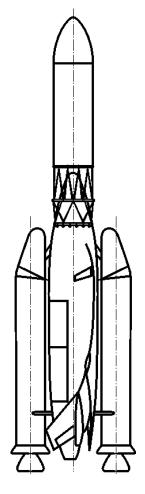
& Pre-development Activities as Risk Mitigation Measure Apr 2005: SRR Mar 2006: PDR

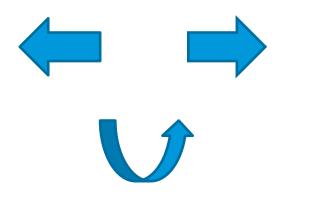


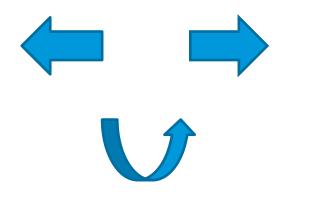
#3: Inflatable Heat Shield "Type la"

Foldable wings study




Layout diagram of the rescue vehicle


Molniya-T

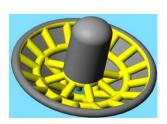

New TPS concepts

Inflatable Reentry Technology

IRT: Masses and Dimensions

DIMENSIONAL Characteristics	Cone Semi-Angle of 60° and nose radius: 1000 mm Reference diameter: 2500mm
Mass	DLS MASS: 350 KG IHS MASS: 59 KG IRT (IT AND TPS) MASS: 52 KG INFLATION SYSTEM MASS: MAX 7 KG
FOLDED VOLUME	175 LITRES
MAIN FUNCTIONS	TO SLOW DOWN THE SPEED OF DLS FROM 8 Km/sec to 0.9 km/sec in 200 second Approximately.
	TO WITHSTAND 405 KW/SQM AND 50MJ/SQM (NON CATALYTIC WALL, RADIATIVE EQUILIBRIUM, INITIALLY COLD WALL)

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014


IRT - Requirements

IRT Concept Selection

Tubular Beam Truss vs. Axisymmetric Structure

Tubular Beam

Axisymmetric Structure

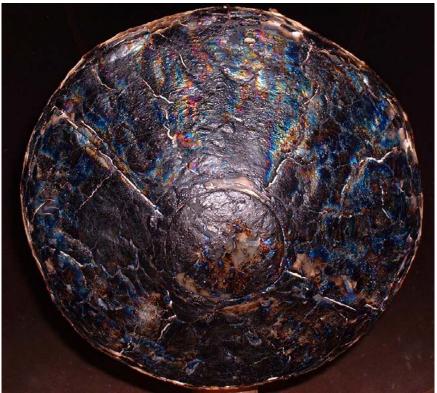
Plus

- Lower weight (4,8 kg)
- Lower inflation volume (0,5 m³)
- Reduced contact areas with TPS
- Folding capability
- Stability
- Shape requirement
- Minus
- Manufacturing complexity

- Plus - Manufacturing
 - simplicity

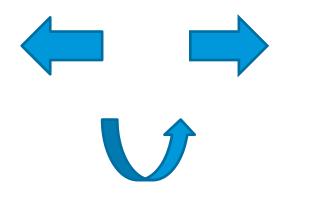
Minus

- Higher weight (6,5 kg)
- Higher inflation volume (1,4 m³)
 - High contact areas with TPS
 - Folding capability
 - Stability
- Shape requirement



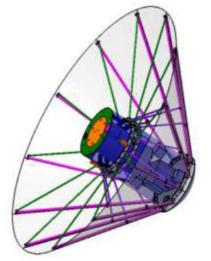
IRT Demonstrator for ground tests

Demonstrator before plasma test


Demonstrator after SCIROCCO plasma test

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

Deployable heat shield: IRENE



ASI has supported since 2010 a research programme, called IRENE, to develop a low-cost re-entry capsule, able to return payloads from the ISS to Earth and/or to perform short duration, scientific missions in LEO. The main features of the IRENE capsule are:

- light weight (100-200 kg), 3 m fully deployed
- payload recoverability and reusability
- low-cost, deployable, disposable heat shield composed by:
 - o a fixed nose (ceramic material)

o a deployable aero-brake (umbrella-like, multi-layered fabric).

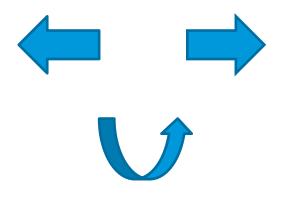
Feasibility study (2011).

TPS materials, for cone and for flexible umbrella shield, tested in Italy in the SPES hypersonic WT U. of Naples, and in SCIROCCO PWT at CIRA (Capua).

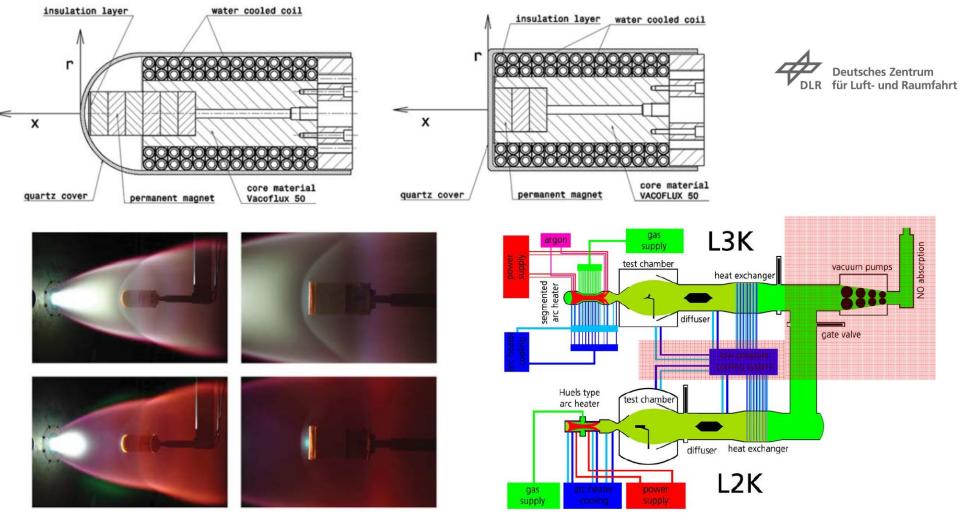
Based on previous results, ASI and ESA are supporting a study to address the main issues of an IRENE demonstrator: MINI IRENE:

- to be embarked as a piggy-back payload for a future mission of a suborbital sounding rocket.
- launch of a demonstrator of IRENE from a sounding rocket requires scaling down the most important parameters

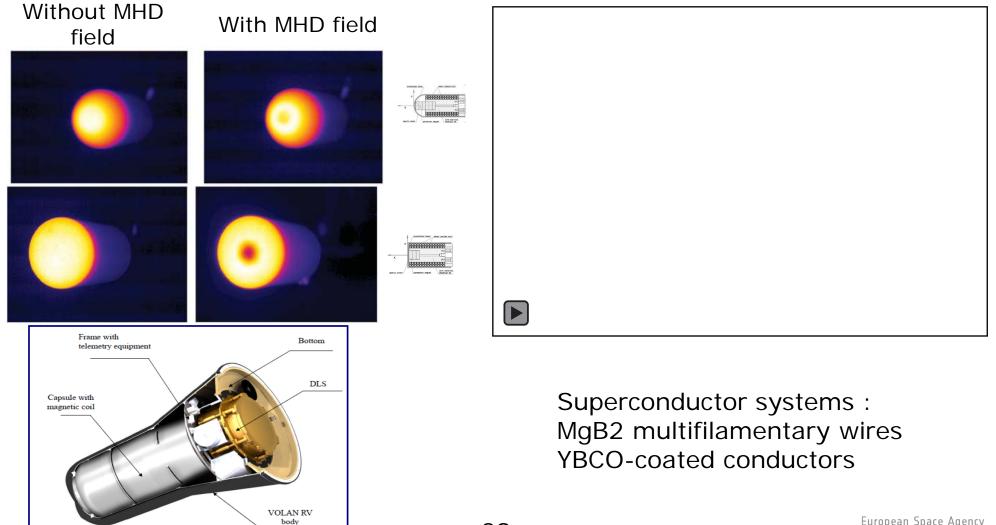
Lionel Marraffa, 1° int symp hyp flight, 30/6/2014


MINI IRENE REQUIREMENTS

- Max diameters: 29cm (folded) 100cm (deployed)
- Max length: 25 cm (folded)
- Total mass 15 kg / Ballistic coefficient \leq 20 kg/m²
- Auto TPS deployt system (exo-atmospheric) $=> 45^{\circ}$ blunt cone
- Loads at launch and during reentry (12 kPa stagnation pressure, 35g deceleration, impact loads for landing at 20 m/s)
- TPS heat fluxes 300-350 kW/m2
- CoG location to guarantee stability and reduce trim angle

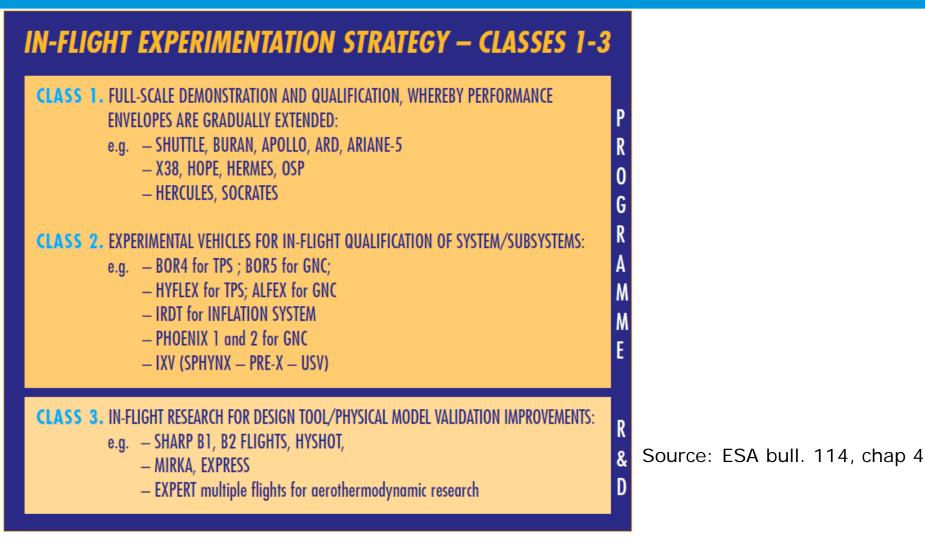


MHD shield

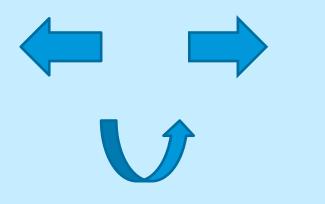


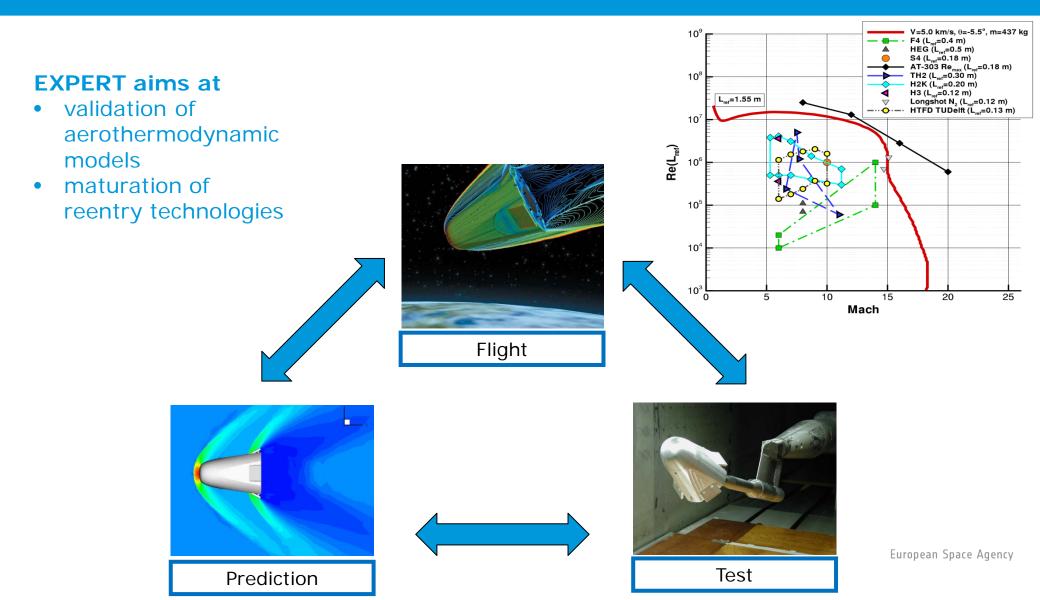
Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

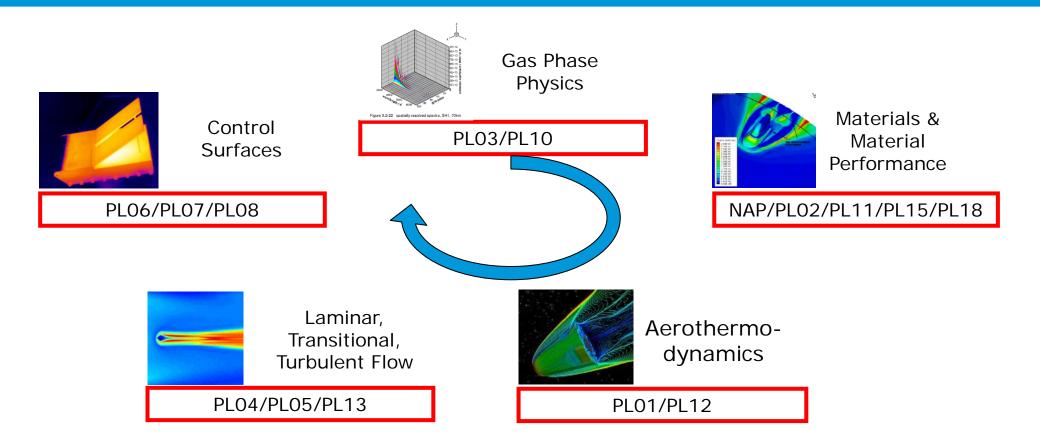
MHD shield: From ground to flight

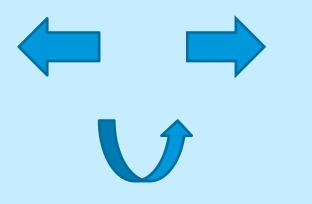

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

2.3. Flight tests






EXPERT: Objectives of the Project


EXPERT Aerothermodynamic: 5 Scientific Disciplines

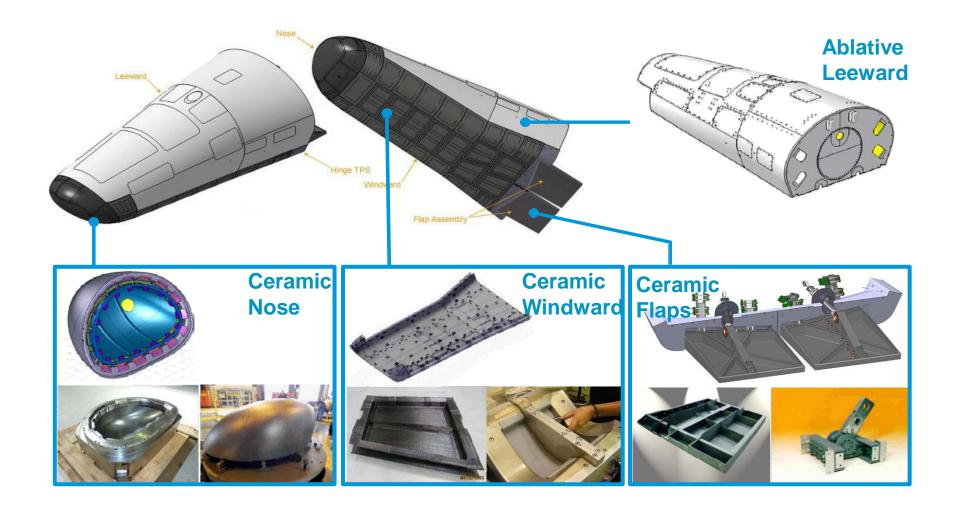
IXV MISSION Objectives and Scenario

Mission Objectives:

- Integrated System Demo
- Technology Verification
- End to End Operations

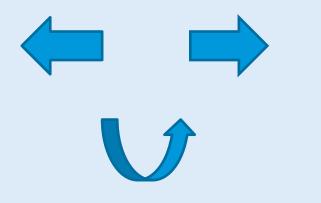
Mission Scenario:

- VEGA launched from Kourou (5º inclinat.)
- 470 km altitude with 7.5 km/s entry speed
- Sea landing in the Pacific Ocean

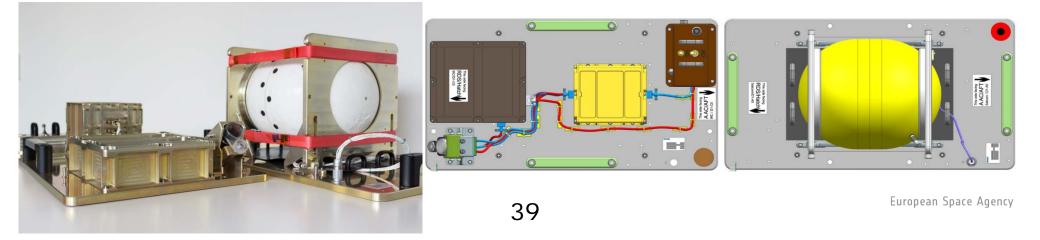


IXV FLIGHT SEGMENT Thermal Protections

Alate experiment

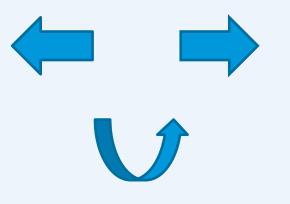

Cesa

2.3.3. Entry Observation Capsules



ATV-Break-up Camera (BUC): Main Concept

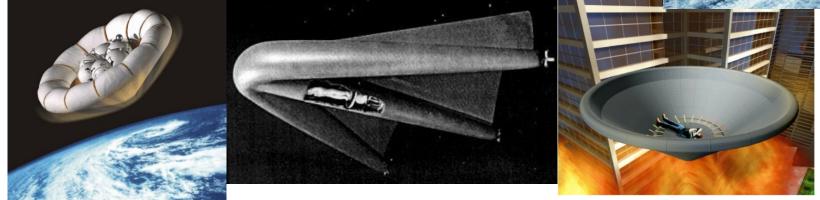
- Infra-Red Camera (IRC)
 - Acquires IR images from ATV Hatch and Forward Cone during reentry phase
 - Manages mission timeline & autonomously switches on equipt when reentry phase detected.
 - Transfers the images to the SATCOM
- SATCOM
 - Buffers and compresses the raw IR images until a downlink connection is available
 - designed to survive ATV5 destructive reentry and harsh thermal environment during subsequent reentry phase
 - Establishes and maintains a downlink connection via the Iridium network. Satcom will attempt to transmit immediately after the breakup of ATV5.
- Targets
 - Are of known emissivity and will be used to calibrate the IR camera images.


Future observation vehicles

- Interest also for Launcher stages observation
- Enhancement of the concept: optical observation of fragmentation events
- Entry from LEO and GTO?

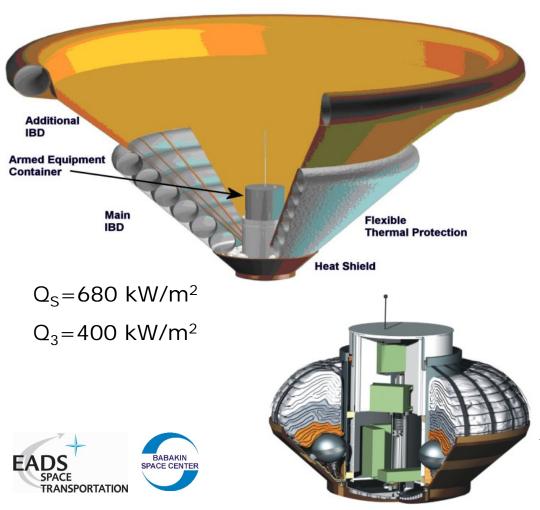
2.3.4. IRDT project

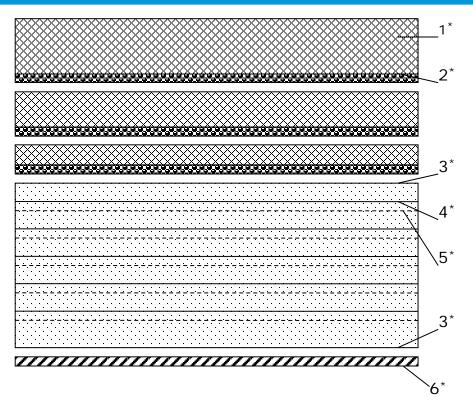
L. Marraffa, TEC-MPA


41

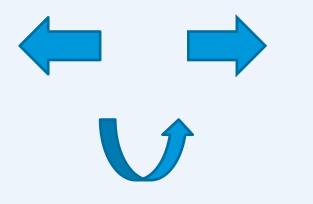
IRDT(1)

- Inflatable technology developed in Russia for Mars96 penetrators and moon lander airbags.
- IRDT = Evaluation of Russian inflatable technology performance and functionality.
- Main application: ISS payload return.
- ESA, ISTC contracts to EADS, Babakin.
- Low cost program, 1999-2005, 4 launches, 2 testflights: IRDT-1 (Soyuz-Fregat) and IRDT-2R (Volna).
- Various applications studied


- IRDT-2R: 140 kg at entry, 80 cm in launch configuration,
 2.3m during entry, 3.8m before landing.
- Mission:



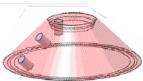
IRDT System Design



1'- sublimating substance, 2'- heat-resistant fiber, 3'- MLI mat facing material, 4'- polyimide foil , 5'- fine glass fiber, 6'- IBD envelope material.

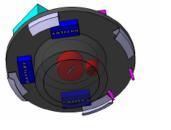
2.3.5. PHOEBUS

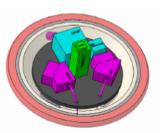
PHOEBUS: Summary of motivations



- Future Sample Return missions require capsule for high speed Earth entry
- ESA has no experience of entries at more than 8 km/s
- High speed entry:
 - New TPS materials needed,
 - radiative flux in VUV becomes important,
 - ablation and radiation interact strongly
- No ground duplication possible, good quality data are not available
- However, techno base and expertise available in Europe
 => RADFLIGHT/PHOEBUS

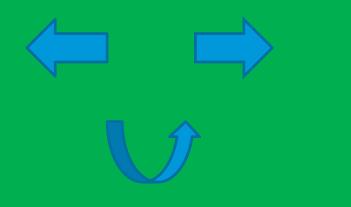
PHOEBUS main features




Payload 2 Spectrometers (VIS and (V)UV) 7 TPS plugs (4 on front, 3 on back cover), each containing 4 Thermocouples (heat flux, recession) 1 Pressure transducer 1 Ratiometer Total mass: 4.18 kg Capsule Mass 25 kg (inc. margin) Scaled Hayabusa shape 45° half cone angle 25 xm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m² Re-entry conditions (@ 100 km entry i/f) FPA = -16.4° Design Heat Flux 14 MW/m² (Max) Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm 1x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization No parachute DLS CFRP honeycomb composite Crash landing on Land Recovery of data via crash resistant baccon(to be developed/upgraded) Mission data stored in crash resistant baccon(to be developed/upgraded) <tr< th=""><th></th><th></th><th></th></tr<>				
Payload each containing 4 Thermocouples (heat flux, recession) 1 Pressure transducer 1 Radiometer Total mass: 4.18 kg Capsule Mass 25 kg (inc. margin) Scaled Hayabusa shape 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m ² Re-entry conditions (@ 100 km entry i/f) Speed = 11 km/s FPA = -16.4° TPS Speed = 11 km/s FPA = -16.4° Propulsion (When applicable) 14 MW/m ² (Max) Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm Propulsion (When applicable) 1 x ATK STAR 37 SPP Solid Rocket Motors to provide spin stabilization No parachute Crash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant beaccon(to be developed/upgraded) Mission data stored in crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant beaconerect merecontioning / distribution to provide miniatur				
Payload4 Thermocouples (heat flux, recession) 1 Pressure transducer 1 Radiometer Total mass: 4.18 kgCapsule Mass25 kg (inc. margin)Capsule shape and dimensionsScaled Hayabusa shape 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m²Re-entry conditions (@ too km entry i/f)Speed = 11 km/s FPA = -16.4°TPSSpeed = 11 km/s Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization No parachuteDLSCrash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant crash landing on Dand Recovery is Beased IRU and additional axial accelerations.Bark StructureCrash based IRU and additional axial accelerometer for high accelerations.GNCMEMS based IRU and additional axial accelerometer for high accelerations.Data Handling 2 Analog acquisition boards 2 Power boardsInspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards				
1 Pressure transducer 1 Radiometer Total mass: 4.18 kgCapsule Mass25 kg (inc. margin) Scaled Hayabusa shape 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m²Re-entry conditions (@ 100 km entry i/f)Speed = 11 km/s FPA = -16.4°Design Heat Flux14 MW/m² (Max)TPSFront shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)Ya TK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization No parachuteDLSCrash landing on Land Recovery: Beacon tracking No TMTCTelecommunication GRCNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data.CFRP honeycomb composite Grash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged 		each containing		
I Radiometer Total mass: 4.18 kg Capsule Mass 25 kg (inc. margin) Scaled Hayabusa shape 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m² Re-entry conditions (@ 100 km entry i/f) FPA = -16.4° Design Heat Flux 14 MW/m² (Max) Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm	Payload	4 Thermocouples (heat flux, recession)		
Total mass: 4.18 kg Capsule Mass 25 kg (inc. margin) Scaled Hayabusa shape 45° half cone angle 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m² Re-entry conditions Speed = 11 km/s (@ 100 km entry i/f) FPA = -16.4° Design Heat Flux 14 MW/m² (Max) TPS Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm No TPS 1 x ATK STAR 37XFP Solid Rocket Motor for acceleration When applicable) 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization No parachute Crash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide minaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards 2 P		1 Pressure transducer		
Capsule Mass25 kg (inc. margin)Capsule shape and dimensionsScaled Hayabusa shape 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m²Re-entry conditionsSpeed = 11 km/s FPA = -16.4°(@ 100 km entry i/f)FPA = -16.4°Design Heat Flux14 MW/m² (Max)TPSFront shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization No parachuteDLSCrash landing on Land Recovery : Beacon trackingNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data.StructureCFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial acceleration.Data HandlingInspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards 2 Power boards		1 Radiometer		
Capsule shape and dimensionsScaled Hayabusa shape 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m²Re-entry conditions (@ 100 km entry i/f)Speed = 11 km/s FPA = -16.4°Design Heat Flux14 MW/m² (Max)TPSFront shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)No parachute Crash landing on Land Recovery : Beacon trackingDLSNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data.StructureCFRP honeycomb composite Crash resistant container for memory Use of crushable foamGNCMEMS based IMU and additional axial acceleration.Data Handling 2 × Name 2 Processor boards (OBC, Payload) 2 × Analog acquisition boards 2 Power boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry		Total mass: 4.18 kg		
Capsule shape and dimensionsScaled Hayabusa shape 45° half cone angle 255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m²Re-entry conditions (@ 100 km entry i/f)Speed = 11 km/s FPA = -16.4°Design Heat Flux14 MW/m² (Max)TPSFront shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)No parachute Crash landing on Land Recovery : Beacon trackingDLSNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data.StructureCFRP honeycomb composite Crash resistant container for memory Use of crushable foamGNCMEMS based IMU and additional axial acceleration.Data Handling 2 × Name 2 Processor boards (OBC, Payload) 2 × Analog acquisition boards 2 Power boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry	Capsule Mass	25 kg (inc. margin)		
Capsule snape and dimensions255 mm nose radius 510 mm base diameter Ballistic coefficient = 107 kg/m²Re-entry conditions (@ 100 km entry i/f)Speed = 11 km/s (PA = -16.4°Design Heat Flux14 MW/m² (Max)TPSFront shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization No parachuteDLSCrash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacn(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foamStructureTrajectory measurement only by use of MEMS based IMU and additional axial acceleration. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boardsData conceptRecoverale on board recording, no Telemetry	•			
dimensions255 mm hose radius 510 mm base diameter Ballistic coefficient = 107 kg/m2Re-entry conditions (@ 100 km entry i/f)Speed = 11 km/s FPA = -16.4°Design Heat Flux14 MW/m2 (Max)TPSFront shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm 1 x ATK STAR 37XFP Solid Rocket Motor for accelerationPropulsion (When applicable)1 x ATK STAR 37XFP Solid Rocket Motors to provide spin stabilizationDLSRecovery : Beacon tracking No TMTCTelecommunication / Data RetrievalNo TMTC Trajectory measurement only by use of MEMS based IMU and additional axial accelerations.GNCTrajectory measurement only by use of MEMS based IMU and additional axial acceleration.Data HandlingInspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry	Commission and	45° half cone angle		
510 mm base diameter Ballistic coefficient = 107 kg/m² Re-entry conditions Speed = 11 km/s (@ 100 km entry i/f) FPA = -16.4° Design Heat Flux 14 MW/m² (Max) TPS Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm Propulsion (When applicable) 1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 37XFP Solid Rocket Motors to provide spin stabilization No parachute DLS Telecommunication / Data Retrieval Structure GNC GNC Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high acceleration. Data Handling Data concept		255 mm nose radius		
Re-entry conditions (@ 100 km entry i/f) Speed = 11 km/s (@ 100 km entry i/f) FPA = -16.4° Design Heat Flux 14 MW/m² (Max) TPS Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm 1 x ATK STAR 37XFP Solid Rocket Motor for acceleration (When applicable) 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization DLS No parachute Crash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Data Handling Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Power boards	dimensions			
(@ 100 km entry i/f) FPA = -16.4° Design Heat Flux 14 MW/m² (Max) TPS Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm Internal insulation material, 10 mm 1 x ATK STAR 37XFP Solid Rocket Motor for acceleration (When applicable) 2 x ATK STAR 37 Solid Rocket Motors to provide spin stabilization DLS No parachute Crash landing on Land Recovery : Beacon tracking No TMTC Recovery : Beacon tracking No TMTC Telecommunication / Data Retrieval Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Structure Crash resistant container for memory Use of crushable foam MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Power boards		Ballistic coefficient = 107 kg/m^2		
Design Heat Flux14 MW/m² (Max)TPSFront shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization No parachute Crash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foamStructureTrajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry				
TPS Front shield: European PICA-like development, 40 mm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mm Yeropulsion (When applicable) 1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization DLS Crash landing on Land Recovery : Beacon tracking No parachute DLS No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. Structure CFRP honeycomb composite Crash resistant container for memory Use of crushable foam GNC MEMS based IMU and additional axial accelerometer for high accelerations. Jata Handling Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry				
TPSdevelopment, 40 nm Back shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion (When applicable)1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilizationDLSNo parachute Crash landing on Land Recovery : Beacon tracking Mo TMTCTelecommunication / Data RetrievalNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data.StructureCFRP honeycomb composite Crash resistant container for memory Use of crushable foamGNCTrajectory measurement only by use of MEMS based IMU and additional axial accelerations.Data HandlingInspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry	Design Heat Flux			
IPSBack shield: Norcoat Liège, 10 mm Internal insulation material, 10 mmPropulsion1 x ATK STAR 37XFP Solid Rocket Motor for acceleration(When applicable)2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilizationDLSNo parachute Crash landing on Land Recovery : Beacon trackingTelecommunication / Data RetrievalNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foamGNCTrajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations.Data HandlingInspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry	TPS			
Back shield: Norcoat Lege, 10 mm Internal insulation material, 10 mm 1x ATK STAR 37XFP Solid Rocket Motor for acceleration 2x ATK STAR 3A Solid Rocket Motors to provide spin stabilization DLS Crash landing on Land Recovery : Beacon tracking No TMTC Telecommunication / Data Retrieval Structure CFRP honeycomb composite Crash resistant to beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite GNC GNC Data Handling Data Concept Recoverals acquisition boards 2 Power boards Power boards Proverboards				
Propulsion (When applicable) 1 x ATK STAR 37XFP Solid Rocket Motor for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilization DLS No parachute Crash landing on Land Recovery : Beacon tracking Telecommunication / Data Retrieval No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. Structure CFRP honeycomb composite Crash resistant container for memory Use of crushable foam GNC MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry				
Propulsion (When applicable)for acceleration 2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilizationDLSNo parachute Crash landing on Land Recovery : Beacon trackingTelecommunication / Data RetrievalNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data.StructureCFRP honeycomb composite Crash resistant container for memory Use of crushable foamGNCTrajectory measurement only by use of MEMS based IMU and additional axial accelerations.Data HandlingInspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry				
(When applicable)2 x ATK STAR 3A Solid Rocket Motors to provide spin stabilizationDLSNo parachute Crash landing on Land Recovery : Beacon trackingTelecommunication / Data RetrievalNo TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data.StructureCFRP honeycomb composite Crash resistant container for memory Use of crushable foamGNCTrajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations.Data HandlingInspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boardsData conceptRecoverable on board recording, no Telemetry	D 1.			
provide spin stabilization No parachute DLS Recovery : Beacon tracking No TMTC Telecommunication / Data Retrieval Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept Recoverable on board recording, no Telemetry	Propulsion			
DLS No parachute Crash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant back back of the mission data. Crash landing on Land Recovery of data via crash resistant back back of the mission data. Structure CFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry Recoverable on board recording, no	(When applicable)			
DLS Crash landing on Land Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. Structure CFRP honeycomb composite Crash resistant container for memory Use of crushable foam GNC MEMS based IMU and additional axial accelerometer for high accelerations. Jata Handling Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry				
Recovery : Beacon tracking Recovery : Beacon tracking No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept	DIC			
No TMTC Telecommunication / Data Retrieval No TMTC Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Power boards Data concept Recoverable on board recording, no Telemetry	DLS			
Telecommunication Recovery of data via crash resistant / Data Retrieval Recovery of data via crash resistant beacon(to be developed/upgraded) Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Crash resistant container for memory Use of crushable foam GNC Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept Recoverable on board recording, no Telemetry		· · · · · · · · · · · · · · · · · · ·		
Telecommunication beacon(to be developed/upgraded) / Data Retrieval Mission data stored in crash resistant Mission data stored in crash resistant memory unit, which holds the mission data. Structure CFRP honeycomb composite Crash resistant container for memory Use of crushable foam GNC Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept Recoverable on board recording, no				
/ Data Refrieval Mission data stored in crash resistant memory unit, which holds the mission data. CFRP honeycomb composite Structure CFRP honeycomb composite Structure Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of GNC MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry	Telecommunication			
memory unit, which holds the mission data. Structure CFRP honeycomb composite Crash resistant container for memory Use of crushable foam GNC Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept Recoverable on board recording, no Telemetry	/ Data Retrieval			
Structure CFRP honeycomb composite Crash resistant container for memory Use of crushable foam Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry Recoverable on board recording, no]	
Structure Crash resistant container for memory Use of crushable foam GNC Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Data Handling Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry				
Use of crushable foam GNC Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Data Handling Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry	Structure			
GNC Trajectory measurement only by use of MEMS based IMU and additional axial accelerometer for high accelerations. Data Handling Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Recoverable on board recording, no Telemetry	54 40144 0			
GNC MEMS based IMU and additional axial accelerometer for high accelerations. Data Handling Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. Data Handling 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept Recoverable on board recording, no Telemetry			5	
accelerometer for high accelerations. Inspired by CubeSat equipment and merged with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept Recoverable on board recording, no Telemetry	GNC			
Data Handling with power conditioning / distribution to provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Power boards Data concept Recoverable on board recording, no Telemetry			V	
Data Handling provide miniaturization. 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards Data concept Recoverable on board recording, no Telemetry		Inspired by CubeSat equipment and merged	1	
Data Handling 2 Processor boards (OBC, Payload) 2 Analog acquisition boards 2 Power boards 2 Power boards Recoverable on board recording, no Telemetry Telemetry		with power conditioning / distribution to		
2 Processor boards (OBC, rayload) 2 Analog acquisition boards 2 Power boards 2 Power boards Recoverable on board recording, no Telemetry	Data Handlin -			
2 Power boards Data concept Recoverable on board recording, no Telemetry	Data Handling	2 Processor boards (OBC, Payload)		
2 Power boards Data concept Recoverable on board recording, no Telemetry		2 Analog acquisition boards		
Data concept Recoverable on board recording, no Telemetry				
Telemetry	Data concert			
Power Primary batteries only	Data concept	Telemetry		
	Power	Primary batteries only		



PHOEBUS Capsule exploded Bottom view of the central ISO view


shelf

Top view of the central shelf

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

3. Coordination, Direct technical support

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

Workshops, working groups

www.esa.int

First Announcement

6th International Workshop on Radiation of High Temperature Gases in Atmospheric Entry NEW DATES

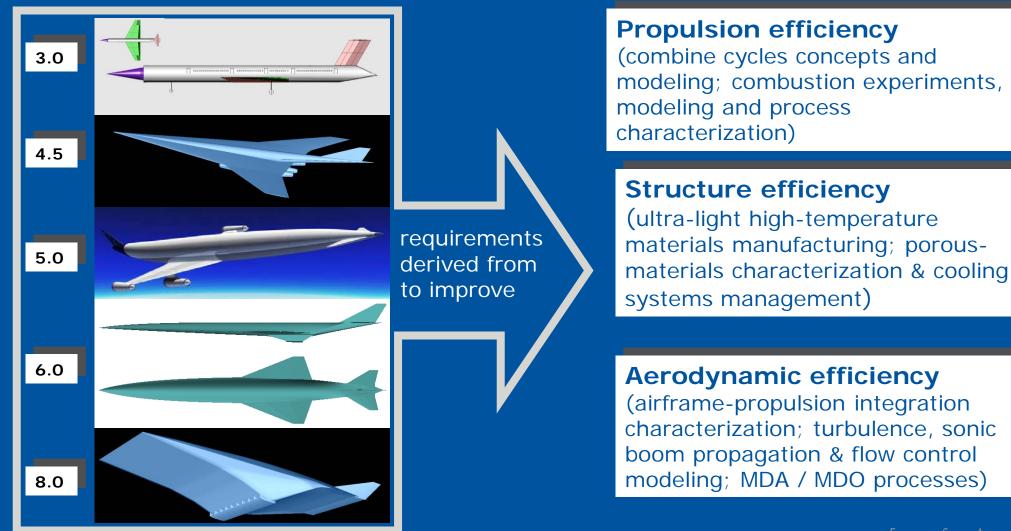
Credits: James Threlfal

24 November 2014 –28 November 2014 St Andrews, UK

LAPCAT/ATLLAS

EUROPE IN THE POST-CONCORDE ERA KEY TECHNOLOGIES TO FLY-FAR BEYOND TRANSONIC Overview of the EU-Programs LAPCAT & ATLLAS

J.M.A. Longo⁽¹⁾ & J. Steelant⁽²⁾


⁽¹⁾LAPCAT/ATLLAS Principal Investigator Institute of Aerodynamics and Flow Technology German Aerospace Center, DLR, Braunschweig

⁽²⁾LAPCAT/ATLLAS Coordinator Division of Propulsion and Aerothermodynamics ESTEC-ESA, The Netherlands

Research in Fluid-dynamics and Aircraft Design within the EU Framework Mini-Symposium West-East High Speed Flow Field Conference, WEHSFF 2007 Moscow, 19-22 Nov. 2007

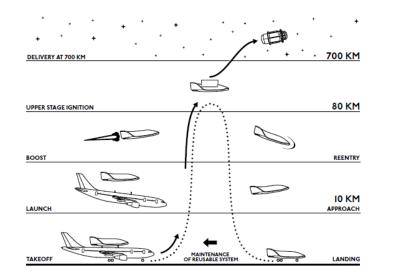
ATLLAS/LAPCAT Strategy

PHYS4ENTRY PLANETARY ENTRY INTEGRATED MODELS SEVENTH FRAMEWORK PROGRAMME

INSTITUTE FOR PROBLEMSIN MECHANICSRUSSIAN ACADEMY OF SCIENCE

VONKARMAN INSTITUE FOR FLUID DYNAMICS

CONSIGLIO NAZIONALE DELLE RICERCHE


POLITECNICO DI HE TORINO

SOFTWARE ENGINEERING RESEARCH & PRACTICES POZNAN UNIVERSITY OF TECHNOLOGY

ESA support to suborbital flight

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

53

- S3
- Space Expedition Corp. SXC
- Skylon

Future developments

Potential Future Developments

– Clean Space

- Rarefied regime characterisation
- Demisable concepts for launchers stages
- Demisable concepts for S/C
- EoL S/C re-entry
- Space Exploration
 - Propellant tanks
 - Decelerator technologies
 - Hypervelocity regime characterisation
- Commercial space
 - Re-usable airframes
 - Re-usable propulsion systems (air-breathing, rocket engines)

Many thanks to:

CESMA, and in particular General Cornacchia for inviting ESA to this symposium D/TEC for giving the opportunity to present our work in the domain of hypersonic flight

My Colleagues at ESA that provided support and information for this presentation:

- J. Gavira (EXPERT), G. Tumino (IXV), J. Steelant (EC), R. Molina (S3)
- G. Ramusat, A. Sirbi (FLPP)
- D. Giordano, A. Passaro and D. Estublier (MHD)
- N. Murray (RBB)
- Jose Longo
- **TEC-MPA**

THANK YOU

Lionel Marraffa

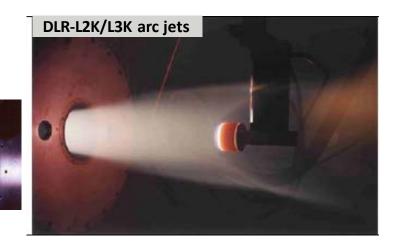
Lionel.Marraffa@esa.int

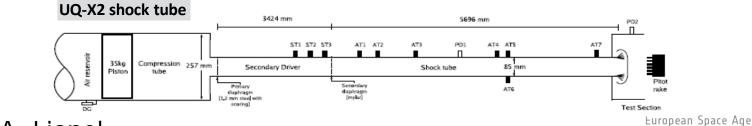
Backup slides

European Space Agency

Radiation data provision

Objective: produce emission spectra to validate the radiative code


VKI-Plasmatron ICP jet

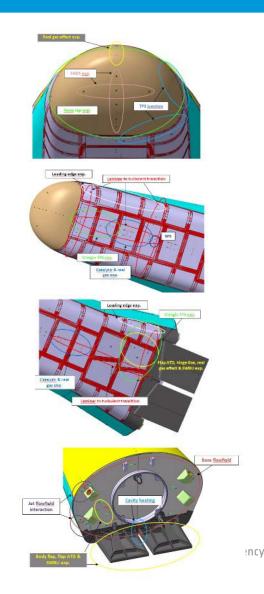

Total enthalpy (MJ/kg)	10.27	33.7	62
Temperature (K)	4970	6900	11220
Pressure (hPa)	28.7	241.8	272.3

VKI-Minitorch

ICP jet

Credit: VKI

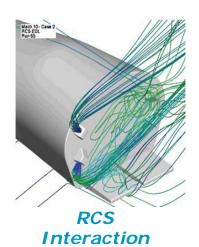
Spectro at ESA, Lionel Marraffa, VKLLS Spectro


IXV FLIGHT SEGMENT In-Flight Experimentation (IFE)

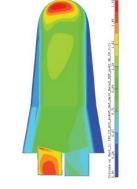
The technological objectives of the IXV mission are met by flying a set of experiments chosen among a wide range of proposals, addressing **system** issues, **aerothermodynamics**, **thermal protections materials**, **guidance**, **navigation**, **control** issues.

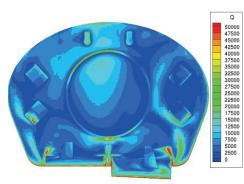
Synergies and commonalities were exploited to identify a global set of sensors covering all experimentation requirements

The sensors are split into conventional ones (pressure taps, thermocouples, displacement sensors, strain gauges) and advanced ones (i.e. infra-red camera, 3 axis accelerometers)



FOCUS ON ATD Industrial Activities



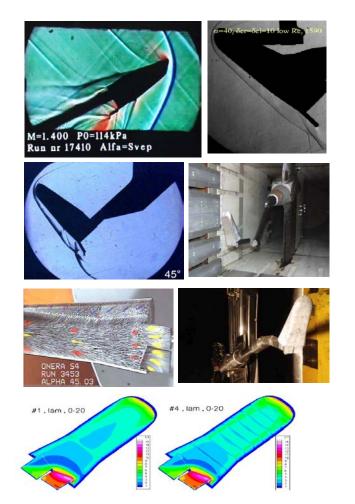

About **850 CFD computations** have been performed up to CDR, including the whole range of flight parameters and flow phenomenology, i.e.:

- Euler plus Boundary Layer
- Navier-Stokes (Perfect Gas, Thermo-Chemical Non-equilibrium, Laminar / Turbulent flows)
- Finite Rate Catalysis
- DSMC
- RCS Jet Flow interaction both in Rarefied and Continuum regime
- Micro ATD simulations with/without radiation coupling

Micro ATD & Radiation Coupling

Micro ATD Shingle Steps

Aileron & Sideslip Coupling



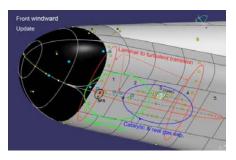
FOCUS ON ATD Industrial Activities

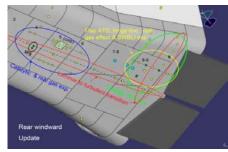
About **350 Wind Tunnel Test** for Aerodynamics and Aerothermodynamics, i.e.:

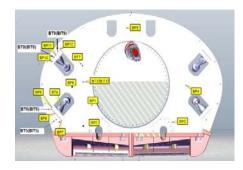
- <u>FOI T1500</u>: 60 RUNS @ M=0.8÷1.4 MODEL A Scale 1:21 (AED)
- <u>SST DNW</u>: 45 RUNS @ M=1.45÷3.94 MODEL A Scale 1:21 (AED)
- <u>S4ma ONERA</u>: 30 RUNS @ M=10 MODEL B Scale 1:13.75 (AED)
- <u>H2K DLR</u>: 34 RUNS @ M=6, 8.7 MODEL F Scale 1:17.6 (AED)
- <u>HEG DLR</u>: 11 RUNS @ M=8.17, 8.59 MODEL D scale 1:13.75 (ATD)
- <u>H2K DLR</u>: 23 RUNS @ M=8.7 MODEL E Scale 1:17.6 (ATD)
- <u>LONGSHOT VKI</u>: 30 RUNS @ M=14 MODEL E Scale 1:17.6 (ATD)
- <u>STARCS T1500</u>: 65 RUNS @ M=0.8÷1.4 MODEL A Scale 1:21 (AED)
- LONGSHOT VKI: 17 RUNS @ M=14 MODEL E Scale 1:17.6 (ATD)
- <u>S3ma ONERA:</u> 40 RUNS @ M=5.5 MODEL G Scale 1:12.57 (ATD)
- <u>PLASMATRON VKI</u>: TPS Catalysis and Emissivity characterization

European Space Agency

FOCUS ON ATD IFE Experiments

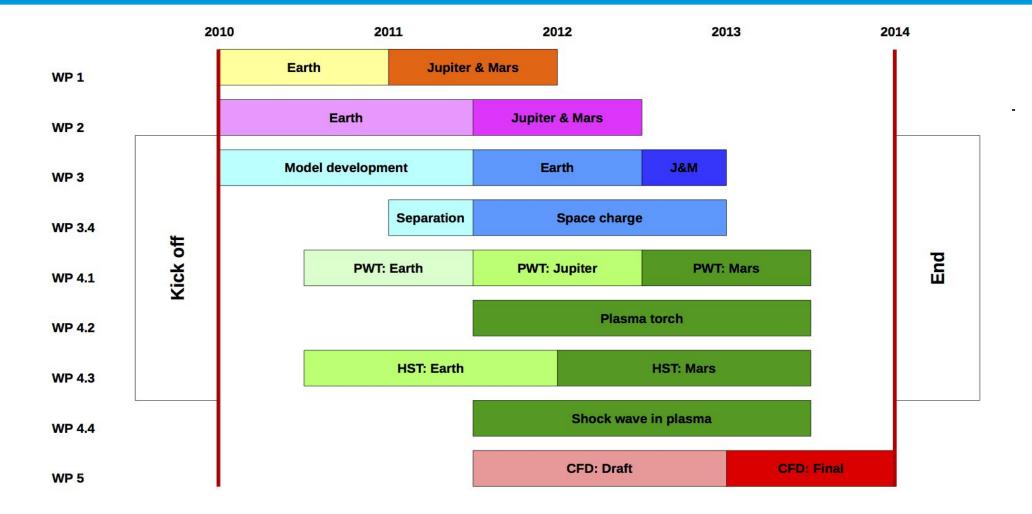



The fullfillment of Aerothermodynamics objectives is achieved with the implementation of several **Experiments**:


- Continuum Flow
- Gap and Cavity Heating
- High Altitude AED 3axis accelerometer
- Base Flowfield
- General Heating
- Wall Catalysis
- Flap ATD and SWBLI
- Jet Flow Interaction
- Laminar to Turbulent Transition
- Skin Friction Sensor
- IR Camera Temp Mapping
- FADS

Overall instrumentation:

- 194 Thermocouples
- 39 Pressure Sensors
- Displacement Sensors
- IR Camera
- 3AX Accelerometer



PHYS4ENTRYWork Plan

Dust Erosion study

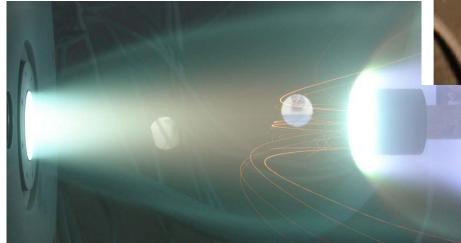
Appearance of Test Samples after Exposure to Supersonic Hot Flow

Working gas CO₂/N₂; heat flux 296 kW/m²

Without particles: Fissured surface pattern, samples slightly increased in thickness

Working gas air; heat flux 292 kW/m²

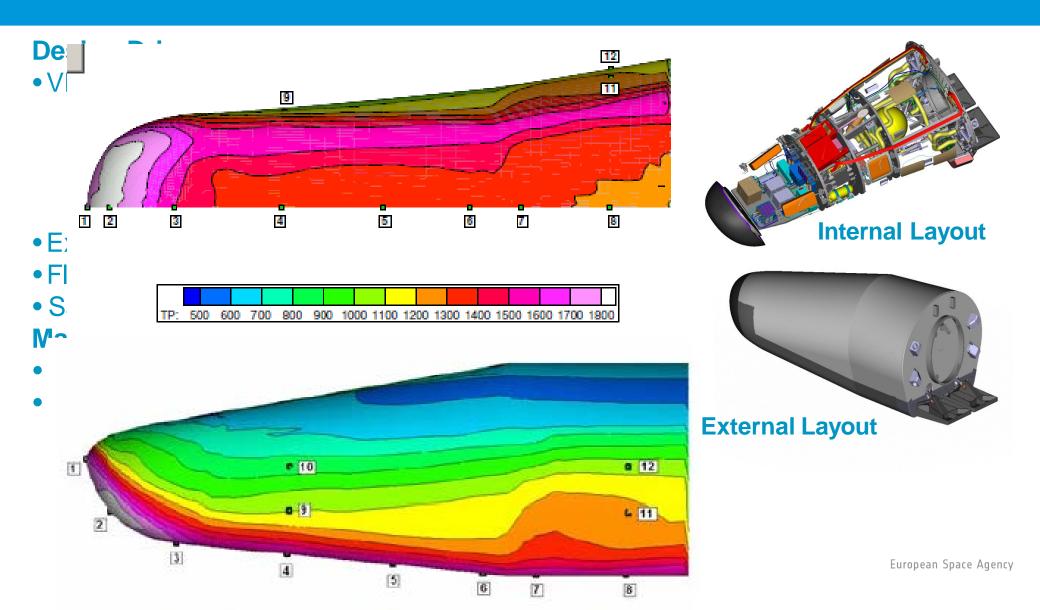
With 3 µm BN particles: Rough surface pattern, samples clearly reduced in thickness



European Space Agency

Lionel Marraffa, 1° int symp hyp flight, 30/6/2014

ESTHER: A support for radiation, chemical kinetics and advanced metrology

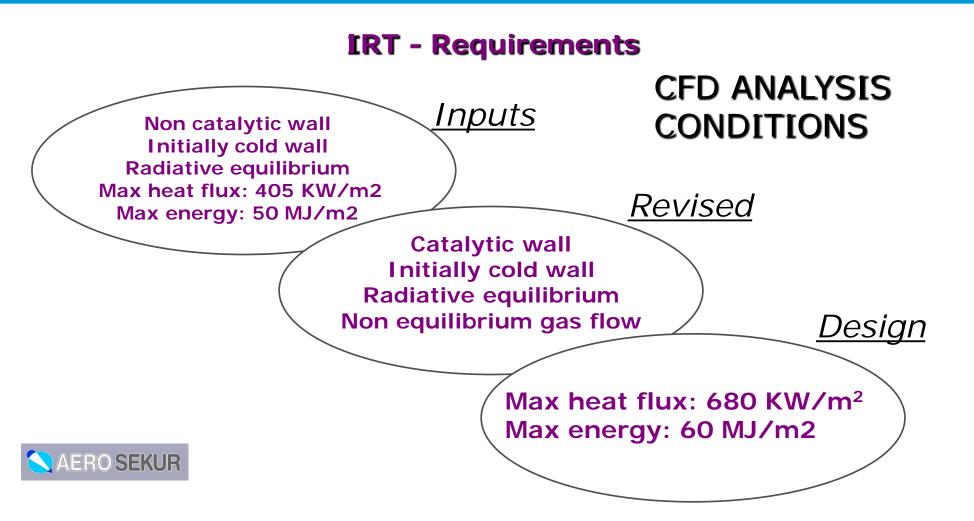


- For the first step, only emission spectroscopy is foreseen: first in visible, then UV/VUV, and then with IR investigations.
- In a second phase, absorption techniques will be implemented, soon after first campaign
- Facility designed for networking and cooperation

IXV FLIGHT SEGMENT Vehicle

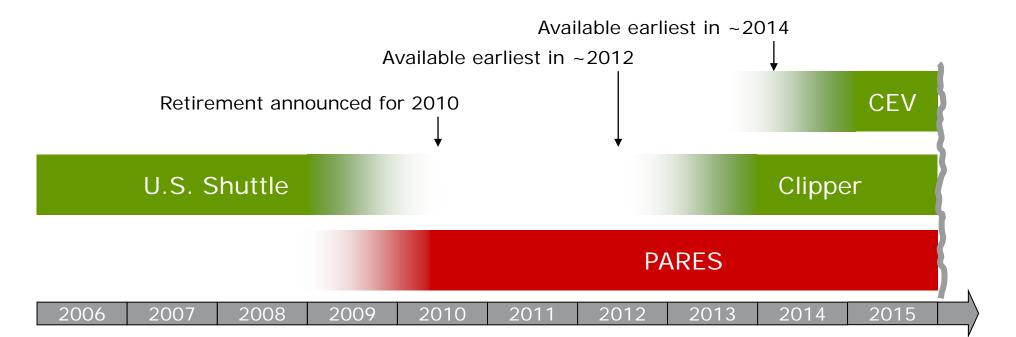
IXV FLIGHT SEGMENT Guidance Navigation and Control

guidance : to maintain the required drag-velocity profile.

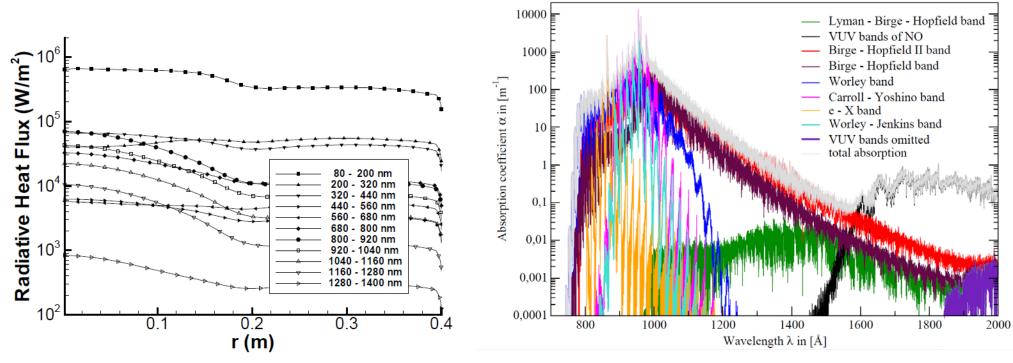

navigation : inertial measurements and GPS updates before 120 km, and a Drag Derived Altitude (DDA) update at 60 km.

Control:

- Yaw: by thrusters.
- Longitudinal and lateral axes: aerodynamic flaps.


Good perfo. & accuracy down to parachute deployment.

Motivation The Future of ISS P/L Retrieval



69

In case, both Shuttle retirement as well as development of new systems will be as scheduled, PARES would mainly complement existing systems by providing download also via cargo vehicles -> additional flexibility ! In case of premature Shuttle retirement and/or delayed availability of new systems, PARES partially closes the gap for ISS download !

VUV Radiation

Contrib. of electronic states to VUV radiation of N₂

T = 7000 K, equil compos. of LAUX test case

Source: AIAA 2010-4774 (IRS)