

Hypersonics and Dream Chaser Dr. John Olson Vice President, Space Systems Group June 2014

Proprietary Statement—Information contained herein represents Proprietary Intellectual Property of Sierra Nevada Corporation and shall not be duplicated, used, or disclosed in whole or in part by any means, person, or organization for any purposes without express written permission. Neither receipt nor possession of this data, from any source, constitutes such permission.

ELECTRONIC SYSTEMS AND INTEGRATION INNOVATIVE & AGILE TECHNOLOGY SOLUTIONS

Hypersonics = Mach Number > 5 75 Years of Effort...

US Hypersonics Quick Summary

- <u>Current State:</u> White House: National Hypersonics Strategy, OSTP & DoD: Hypersonics Capability and Facility Report to Congress, US Air Force Hypersonics Plan, DARPA Hypersonics Plan, NASA Hypersonics Program
- Focus Areas:
 - Weapons, ISR, Access to Space
- <u>Challenges/Opportunities</u>: Technology, Budgets, Programmatics, Facilities, Ops
- Drivers:
 - Integrated National Hypersonics Plan: To include Requirements, Architectures, Systems, RDT&E needs, Ranges/Facilities/Infrastructure, and Personnel plan
 - <u>Policy:</u> A stable National and Department/Agency policy
 - <u>Budgets:</u> A stable, requirements-based multi-year budget

Integrated Hypersonics Strategy & Plans

Hypersonics Technology Maturation and Foundational Research

- NASA's Hypersonics Project: Reusability & Re-entry
- DARPA's Integrated Hypersonics Program Re-planned
- Fuel development
- High-Speed ISR S&T
- X-51A Waverider
- High Speed Strike Weapon (HSSW)
 - Initiated to design and flight test technologies
- Conventional Prompt Global Strike (CPGS)
 - DARPA HTV-2
 - Army Advanced Hypersonic Weapon (AHW)
- DARPA's Tactical Boost Glide (TBG)
- Hypersonic International Flight Research and Experimentation (HIFiRE)
 - Bi-lateral arrangement: USAF AFRL & Australian DoD (DSTO)

Hypersonics: Building on Recent Success

• X-51A

- M5+ w/JP7 Fuel; Air launched from B-52
- 1st flight in May 2010 partial success
- 2nd flight in June 2011 fuel system issues
- 3rd flight in August 2012 flight controls issues
- 4th flight in May 2013 SUCCESSFUL!!!
 - 4+ mins of powered flight

CPGS

- High Mach boost glide; advanced materials and thermal protection
- HTV-2: two flight tests, did not meet objectives; substantial data obtained
- AHW: first flight test met objectives

HIFiRE

- Foundational flight test experiments; collaboration with Australia
- 4 successful flight tests
- Engineering systems and avionics, aerodynamics and aero heating, hydrocarbon scramjet operability

SIERRA

NEVADA

CORPORATION

NASA Hypersonics Project: *Reusability and Re-entry*

Highly Reliable Reusable Launch Systems

Development and validation of foundational tools and technologies for two hypersonic system classes: the Highly Reliable Reusable Launch Systems (HRRLS) class, an airbreathing space launch vehicle, and the High Mass Mars Entry Systems (HMMES) class, a large vehicle focused on transporting humans to and from Mars.

Mars Entry Vehicle

Dream Chaser Space System

SIERRA NEVADA CORPORATION

- Capable of 7 crewmember transport for the International Space Station and LEO
 - Meets NASA requirements for 4 crew to and from ISS
 - Also accommodates pressurized cargo
- Non-toxic Main Propulsion System (MPS) motors used 3rd stage insertion, launch abort, orbital translations, and deorbit maneuver
- <1.5g re-entry profile and >1000 nm cross-range capability
- Integrated on the Atlas V launch vehicle, but Launch-vehicle agnostic
 - Mature, reliable, and compatible with 100+ consecutive Atlas (46 consecutive Atlas V launches)

Evolution of Dream Chaser

SIERRA NEVADA CORPORATION

NASA's HL-20 Spacecraft (Russian BOR-4 heritage) 1970

- Trajectory studies
- Handling evaluations
- >1200 wind tunnel tests Abort landing simulations
 - Ergonomics and egress
 - Fabrication and operations

Building Upon Space Shuttle Heritage

- Leverages 40 yrs of Shuttle design, technology development, and operational experience
- Reusable, Reconfigurable Runway-Landing Vehicle
- Ideally Suited to Host a Range of Other Missions

SNC's Dream Chaser Vehicle

- Incorporates 10+ years of research, design, development, and testing
- Modern materials, Aerodynamic data
- Improved flight control surface design
- Significant CFD analysis, Wind Tunnels
- Trajectory refinement
- Component and wind tunnel testing
- Launch vehicle integration
- Flight simulation

1980

Dream Chaser Historic First Flight – Much More History to Make!

Dream Chaser Spaceship

Space Shuttle Enterprise October 26, 1977 Edwards AFB, Runway 22L

Dream Chaser Spaceship October 26, 2013 Edwards AFB, Runway 22L

Space Systems

- Completed 29 Milestones under the NASA Commercial Crew Program
- Engineering Test Article (ETA) Tested & Flown; Fly again Fall 2014
- Orbital Test Vehicle (OTV) Under Construction, First Orbital Flight 2016

Dream Chaser

Our NASA Mission: Crew Transport Services to the ISS

DC Concept of Operations

SIERRA NEVADA CORPORATION

Capability for unassisted crew egress

2219-002-008 13

Nominal Mission

Contingency Capability

Emergency Capability

Dream Chaser Hypersonics Overview

- The Dream Chaser program is completing its hypersonic verification through both analysis and test
 - Aerodynamic testing in wind tunnels
 - Thermal Protection testing in wind tunnels
 - Computational Fluid Dynamics (CFD) analysis with various software codes
 - System, sub-system, and component testing, including sensors and controls
- Dream Chaser re-entry is comparable to Space Shuttle with regards to flight conditions in the hypersonic regime

Dream Chaser Hyper Analysis & Test

- Computational Fluid Dynamics (CFD) Analysis
- Wind Tunnel Testing: Subsonic, Transonic, Supersonic, Hypersonic
- 2 Orbital Test Flights: OFT-1 (2016) and OFT-2 (2017)
- Powered Flight Testing
- Lift to Drag Ratio (L/D): Similar to Shuttle
- Trajectory optimization: Crossrange 1,100+ nm
- Aero database reconstruction \rightarrow Validate models
- Mach 25 re-entry
- High-altitude Energy Management (Same as Shuttle) S-turns
- Heading Alignment Cone (HAC) Energy Management
- Sensors and Data throughout flight profile
- Pressure: Static, Dynamic, Base
- Temp: Profile, Peak, Rates, Loads, Thermal Diffusivity

Hypersonics Wind Tunnel Testing

Extensive Testing with 11 state-ofthe-art wind tunnels used

SIERRA NEVADA

CORPORATION

- NASA Ames Research Center
- NASA Marshall Space Flight Center
- NASA Langley Research Center
 - Hypersonic, aerodynamic wind tunnel testing at LaRC
 - 6% Dream Chaser OV Model
 - Approximately 2,000 Runs
 - Alpha sweeps (continuous and pitch-pause)
 - Beta sweeps (continuous and yaw-pause)
 - Mach sweeps
 - Control surface sweeps

First Orbital Launch November 2016

She Space Systems

Dream (

ULA

It all starts with a Dream...Hypersonics and Space are the Future...today!

SIERRA NEVADA CORPORATION

Summary

- Air and Space platform S&T and development making progress, contributing to US national strategy/capability
 - Investments in R&D, Facilities/Infrastructure, Test, Personnel, and Programs are producing results
 - Several successful efforts

Hypersonics provide important capabilities

- Speed solves problems and creates opportunities
- Reusability aids affordability
- Driving requirements in Air & Space will push results
- Stability in focus, funding, and foundation building is key
 - Building on recent successes in hypersonics R&D
- SNC's Dream Chaser program is revolutionary!

Dawn of a Dream!

Thank you!

SIERRA NEVADA CORPORATION

- - 1