

Ultrahigh temperature ceramics for thermal protection systems and propulsion

Diletta Sciti

National Research Council of Italy (CNR) Institute of Science and Technology for Ceramics Via Granarolo 64, 48018 Faenza (RA)

Acknowledgements

- Ing. Cantoni, CIRA.
- ISTEC staff: A. Bellosi, F. Monteverde, L. Zoli, L. Silvestroni, V. Medri
- Prof. Savino, Department of Industrial Engineering (DII) Aerospace section, University of Naples "Federico II", for tests on TPS and rocket nozzles.

Funding

- AFOSR research grant FA8655-12-1-3004 (Contract monitor Dr. Sayir) for short fiber-UHTCs composites.
- MoD (PNRM) cofunding activity on UHTCs for propulsion applications (SMARP Sviluppo di MAteriali ceramici ultraResistenti all'ablazione per applicazioni nella Propulsione)
- CIRA has funded ISTEC research on UHTCs through several programs and projects

Outline

- Introduction
- Short fibers ZrB₂ composites for TPS
- SiC/C long fibers ZrB₂ composites for TPS
- Development of ultra-ablation resistant ceramics for application in the propulsion -SMARP
- Conclusions

Ultra High Temperature Ceramics

Potential materials for use in extreme environments such as:

- scramjet engine components, leading edges, nosecones
 for hypersonic vehicles;
- Rockets nozzles
- cladding materials in generation IV nuclear reactors;

Critical challenges:

- thermal shock resistance
- damage tolerance

Tm (°C)	ρ (g/cm³		
3890	_TaC 13.9		
3880	_HfC 12.7		
3540	ZrC 6.7		
3380	HfB ₂ 11.2		
3305	HfN 13.8		
3245	—ZrB ₂ 6.1		
2950 —	_ZrN 7.1		

C istec

ISTEC – CIRA long term collaboration

<u>Sharp Hot Structures</u> (CIRA)- 2000

C istec

Advanced Structural Assembly - Phase B (Thales Alenia Space) 2004-2010

UHTC Winglet in *EXPERT* (ESA Programme) (2006-on hold)

SHARK ESA project (2010)

Most of test articles in monolithic UHTCs suffered from a dramatic failure!

Short fibers-reinforced UHTCs

- Easy approach to increase the fracture toughness (SiC particles \rightarrow SiC fibers)
- Same processing as conventional powders

Toughness vs Strength (SiC fibers)

-Tyranno lower than Hi nicalon

-Type S < Hi Nicalon, Tyranno

linearly

-Highest values for Tyranno

-Type S (coated/uncoated)

similar to Tyranno

45 mm

<u>30 mr</u>

Boride –SiC_{fiber} vs Boride –SiC_{particle}

Sample	Sintering Temperature, °C	Density g/cm ³	K _{ic} MPam ^{1/2}	σ _{RT} MPa	σ ₁₂₀₀ MPa	σ ₁₅₀₀ MPa	TSR K
ZrB ₂ -20SiCf	1700	5.3	5.5-6.5	400-500	300-400	200-30 0	450
ZrB ₂ -20SiCp	1900	5.3	~2 5	700-1000	outermost g	200-50 lassy coating	385 35 mm

ZrB₂-SiC particles have very high strength even at 1500°C

BUT

Low damage tolerance causes failure before high temperature regimes are reached

Arc Jet Tests (in collaboration with DII)

• 1 g/s of 80%N₂+ 20% O₂

before

15 mm

- static pressure in the chamber $\approx 200 \text{ Pa}$
- specific total enthalpy 8-16.4 MJ/kg
- maximum stagnation point pressure 6-12 kPa
- 2 colour pyrometer + IR camera

Tip reached temperatures as high as 2300°C

50

200 Time, sec

1600

1500

after

Tes	t H0 _{max} (MJ/kg)	time (sec)	T _{max} (°C)	ε _{1 µm}	Tot. time
f1	13.8	285	1380	0.88	
f2	17.0	330	1590	0.86	16' 15"
f3	12.3	120	1395	0.65	10 45
f4	17.0	270	1680	0.54	

C istec

The wedge survived the 4 tests!

ISTEC/CIRA 2010-2013 collaboration

Extensive characterization campaign of short fibers-ZrB₂ composites

Temperature °C	Thermal Diffusivity mm ² /s	Specific Heat J/(gK)	Thermal Conductivity W/(mK)
18	28.624	0.426	65.657
599	15.950	0.692	59.391
900	14.493	0.701	54.644
1198	13.403	0.745	53.773
1500	12.544	0.748*	50.515

SCRAMSPACE project 2013

n: SiC + ZrC

SiC core

Long fiber reinforced UHTCs (ZrB₂)

-Simple preforms: tows or 1D preforms -SiC or C fibers -Slurry infiltration & sintering

GOALS

- Increase the fiber volumetric amount >40%
- Non-brittle behaviour

Simple arrays of fibers

ZrB₂ – SiC 1D textiles

Overall: fiber vol. amount is 40% Maximum density is 60-70% Fracture: fiber surface is very smooth Matrix fully dense Problems: cracks

 Signal A = AsB
 Date :3 Sep 2013

 Specimen I = 0.0 pA
 Time :10.41:40

ZrB₂ - 1D carbon textiles

Density	~2.3 g/cm ³
Fiber	~75 vol%
Relative Density	80-85%

EHT = 10.00 kV

Aag = 500 X

					1 300µm	Signal A = SE2 Specimen I = -1611 pA	Date 21 May 2014 Tree 1180-40
Mag = 190 X 100 μm Output To = Display/File	EHT = 10.00 kV WD = 7.3 mm	5 60.00 µm	Signal A = AsB Specimen I = 00 pA	Date :30 May 2014 Time :16:30:55			

HP90

Load - Displacement behaviour

Development of ultra-ablation resistant ceramics for application in the propulsion - SMARP

Combustion flame of oxygen and hydrocarbon gases (butane-propane), 4 min

Rocket nozzle tests

Ceramic rocket nozzle (monolithic or reinforced)

Rocket engine test at DII - Prop lab

Conclusions

- ISTEC research is presently focused on reinforced UHTC systems (UHTC-CMCs)
- Fabrication of of short fibers-reinforced UHTCs up to 30 vol% fibers is simple, brittle behaviour, density ~ 5 g/cm³.
- Long fibers: volumetric amount increased from 40 to 70%, non brittle behavior, density ~ 2.5 g/cm³

Thank you for your kind attention