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» Hypersonic transport
— 100 passengers
— Mach 5/ Altitude 25 km

— 2 hours from Tokyo to Los Angeles

— Use existing airports
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» Baseline configuration
— Multidisciplinary design optimization

Weight Design variables
Shape <
Weight ’Shape Inlet area
X Aero. force
Aero.
T i1l Thrust Optimization
~__|SFC
Propulsion
AoA Altitude] | !
Mach Mach o
Mission Objective function
Fuel weight
uelwelg Constraint function
Baseline specifications
\‘ao\’* MTOW 370 ton
e
, Dry Weight 190 ton
o = Fuel Weight 180 ton

?“e\,@(\v» —— Length 87 m
Span 35m
\ Wing Area 770 m2

Engine PCTJ

Baseline configuration Thrust (SLS) 44 ton X 4
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» Evaluation of Aerodynamic heating rate

— In MDO, aero. heating was not taken into account.

— TPS weight was estimated using empirical relation.
+ HASA, NASA-Contractor Report 182226

= CFD and wind tunnel test (WTT) were conducted to evaluate aero. heating.
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» CFD analysis

— Navier-Stokes analysis
+ JAXA's UPACS code
— Equation: RANS
— Flux discretization: AUSMDV (3rd order)
— Turbulent model: Spalart-Alimaras
— Number of points: 15 million

* Flow condition:

— Wind tunnel condition
TO =700 [K], M =5, AoA = 5 [deq]
Re = 1.7x10% (P0=1.0 [MPa]), Laminar Validation
Re = 7.1x10% (P0=1.5 [MPa]), Turbulent
Tw = 303 [K], Isothermal wall

¥
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¥

— Flight condition
» h=242[km], M =5, AoA =5 [deg]
» Re =4.0x108, Turbulent TPS design
» Tw =823 [K], Isothermal wall
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» Wind tunnel test
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» Wind tunnel test

— Wind tunnel model
Temperature
] 0.25% model 0.74% fuselage model
Material Vespel (polyimide plastic)
semi-infinite,
M, AoA M =35, AoA = 5 [deg] 1D heat equation
PO, TO 1.0 [Mpa], 700 [K] 1.5 [MPa], 700 [K] l
Re 1.7x108, Laminar 7.1x108, Turbulent
Measurement Temperature (IR thermography) Aerodynamic heating

sphere (G1mm)

0.25% model, L=220mm 0.74% model, L=643mm
Fuselage + Wing + V-talil | Fuselage
(g,, on all components in laminar B.L.) (g, in turbulent B.L.)

Wind tunnel model
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> Result of WTT

— Result of 0.25% model (Laminar boundary layer)
*  Wind tunnel test

Aerodynamic heating
(M =5, AoA =5 [deg], Upper surface)

Aerodynamic heating on all components was measured.
Large aerodynamic heating due to separated vortex was observed.
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» Comparison between CFD and WTT

— Result of 0.25% model (Laminar boundary layer)

Upper surface (WTT)

@ upper

Lower surface (WTT)

semi-infinite,1D heat equation
is not correct.
= QOverestimation in WTT

Lower surface (CFD)

CFD agrees with wind tunnel test qualitatively
except in region where thickness of model is thin.

Distribution of Stanton number at AoA=5deg.
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» Comparison between CFD and WTT

— Result of 0.74% fuselage model (Turbulent boundary layer)

Upper surface (WTT)

St
0.001

Boundary layer trip 0.000
Camera #1 Camera #2

Upper surface (CFD)

Distribution of Stanton number at AoA=5deg.

Boundary layer transition was observed behind boundary layer trip.
High aero. heating due to separated vortex was observed also in turbulent B.L.
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» Comparison between CFD and WTT

— Result of 0.74% fuselage model (Turbulent boundary layer)

Boundary layer trip
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St 0.0006 : attached.
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0.0002 | — ler?_ gﬁfi%r (;;fs\;ortex ] CFD shows larger aero. heating.
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» TPS design based on CFD result

High heating rate High heating rate
A (9,: ~ 100kW/m?) (9,: ~ 100kW/m?)
e - e ——
4w/ mr2] - /NN —

m 40 .
Cryogenic tank Cabin Thin wing

(qQy: 5 ~ 20kW/m?) (Gu: © ~ 15kW/m?)  (q,: 5 ~ 30kW/m?)

" CFD result at flight condition

Super alloy (Inconel) honeycomb should be applied in the region where
aerodynamic heating is large (e.g., nose and leading edge).

Ti multi-wall can be applied in the region where qw is about 20kW/m?2.

€ Summary
v" Results of wind tunnel test and CFD agreed qualitatively.
v" CFD showed larger aerodynamic heating in the region where separated vortex is attached.
= Different turbulent model should be tested in the future.
v' TPS was designed based on aerodynamic heating obtained by CFD.
= TPS material was selected.
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BBJ curope-Japan “HIKARY” Collaboration @

Objectives: Market analysis, Environmental Impact Assessment,

Aircraft Systems Study, Propulsion, Common R&D Roadmap
Task of JAXA: Performance evaluation of Hypersonic Pre-Cooled Turbojet Engine
Status: Mach 4 experiment has been successfully conducted.

Performance map will be provided to research partners in August.

Exhaust Nozzle External Nozzle
Fuel Control Systeam After Burner \ \

Core Engine
Pre-Cocler |
Air Intake )

Control & Measurement Box

Mach 4 Direct Connect Test Mach 4 Wind Tunnel Test
-High Temperature Structure -Starting Sequence
-Mach 4 Operation -Heat Structure of Variable Mechanism

Hypersonic Pre-Cooled Turbojet Engine (JAXA)
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» Hypersonic passenger aircraft was studied using MDO technique.
— Baseline was defined.

» Aerodynamic heating rate was evaluated by both CFD and WTT.
— CFD and WTT showed qualitative agreement.
— TPS was designed based on aerodynamic heating rate obtained by CFD.

» Results from Hikari project was briefly introduced.

» Future works:
— Plan for experimental vehicle with small PCTJ flying at Mach 5.
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